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1. I VETTORI

I vettori sembrano sconvolgere le studentesse e gli studenti a tal
punto che qualcuno vuole smettere di studiare matematica e fisica.
Prima di fare scelte drastiche di cui potreste pentirvi in futuro, dovete
leggere questa frase: un vettore ¢ una freccia.

Mi direte che la sto facendo troppo facile, ma fidatevi. I vettori
sono frecce, e noi li useremo come tali. Nelle prossime pagine cerche-
remo esaminare attentamente i vettori, introdurremo un gergo tecnico
appropriato, ma non ci allontaneremmo dal concetto di freccia. Que-
sto lavoro serve solo ad affinare la nostra consapevolezza sulle frecce:
adesso un vettore & solo una freccia, ma per la fine di questo modulo i
vettori saranno frecce — consapevolmente.

Questi sono dei vettori:

§1.1. Il vettore. Un vettore, in quanto freccia, porta con se tre infor-
mazioni:

(1) La direzione, ossia la retta su cui giace la freccia. Attenzione,
due rette parallele sono la stessa direzione.

(2) 11 verso: data la retta, il vettore (la freccia) puo puntare in due
direzioni opposte — di 1a o di qua.

(3) 11 modulo, ossia la lunghezza del vettore. Il modulo di un vettore
¥ si denota con ||7]|.

Un vettore, in quanto freccia, ha due punti speciali:

(1) la coda & il punto da cui il vettore parte,
(2) la punta & dove il vettore arriva.

/‘s (sda la rm{; —
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4 NICOLUSSI GOLO
§1.2. Esercizio. Tra i seguenti vettori:

e quali hanno la stessa direzione?
e quali hanno la stessa direzione e lo stesso verso?
e quali hanno lo stesso modulo?

Quindi, quali delle seguenti frecce sono lo stesso vettore?

§1.3. Usanze di nome. Se dobbiamo dare un nome a un vettore,
possiamo usare una lettera qualunque, come v, w oppure z. E costu-
me mettere una freccina sopra il nome di un vettore per indicare che
stiamo parlando di un vettore. Per esempio, U, W e Z. Questo costume
risulta particolarmente utile se vogliamo parlare del modulo di un vet-
tore senza usare le barrette: cosi, il modulo di ¢ viene indicato con v
(senza freccina):

1] = v.

Questa usanza é tipica in fisica, ma meno in matematica. Io cerchero
di adottarla il pit possibile, anche se sono un matematico.

§1.4. Il vettore applicato. Un wettore applicato contiene una infor-
mazione in pit: dove sta la coda, ossia il punto di applicazione. Cosi,
nell’esercizio §1.2 abbiamo visto che lo stesso vettore pud comparire
in posti diversi del foglio. Un vettore applicato sta invece in un punto
preciso.

§1.5. Esercizio. Abbiamo tre vettori, che chiamiamo v, @ e 7, e due
punti che chiamiamo P e (). Disegna i vettori applicati (v, P), (W, Q),
e (7,Q). In altre parole, applica il vettore ¢’ al punto P, il vettore w al
punto @ e il vettore v al punto Q.
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A
Tz
§1.6. Somma di vettori. I vettori si possono sommare con il cosi

detto metodo del “punto-coda”. Quindi, se abbiamo due vettori ¢ e 0,
la somma U+ w & un vettore ottenuto cosi:

(1) si fissa un punto e si applica ' a questo punto;

(2) si applica o alla punta di

(3) il vettore '+ ¢ il vettore con la coda nella coda di ¥/ e la punta
nella punta di w.

&l
)
2l
0

Si noti che v+ @ e W + ¢ sono uguali!

§1.7. Esercizio. Disegna dei vettori e fanne la somma. Disegna quat-
tro vettori vy, vy, U3 e Uy e fai la somma ¥ + Uy + U3 + Uj.

§1.8. Esercizio. Disegna due vettori v e w, e calcola graficamente
U — .

§1.9. Moltiplicazione di un vettore per uno scalare. La parola
“scalare” ¢ un sinonimo di “numero” nel gergo dei vettori. Possiamo
moltiplicare un vettore ¢ per un numero reale qualunque ¢ € R.
Per esempio, 20 ¢ v+ v, e 30 = ¥ + U + U, mentre %17 ¢ meta di 7.
Quindi, dati un vettore v e uno scalare t € R, costruiamo il vettore
tU cosi:
(1) tv ha la stessa direzione di v}
(2) se t =0, tU' ¢ un punto; se t > 0, tv' ha lo stesso verso di 7; se
t < 0, tv ha verso opposto di v;
(3) t¢ ha modulo |¢| - ||7]|.
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In particolare, —v' ¢ il vettore “opposto” a ¥. Giustamente, v+ (—7) =

0.
-
—_—
N
vellwll=2L
tv
tv = ¥l =35-225
L= 47 R
4=
Y=-4 —
- =1 1= 2

§1.10. Esercizio. Disegna tre vettori, scegli tre numeri, e fai almeno
tre moltiplicazioni scalare per vettore.

§1.11. Esercizio. Disegna due vettori ¢ e w, e calcola graficamente
U — .

§1.12. Vettori nel piano cartesiano. Possiamo descrivere ciascun
vettore nel piano cartesiano usando due numeri, chiamati coordinate
del vettore:

(1) Applichiamo il vettore all’origine, ossia mettiamo la coda del
vettore nel punto (0, 0);

(2) T due numeri che descrivono il vettore sono le coordinate (ascissa
e ordinata) della punta del vettore.

N
] ar= (a,b)
ar 3@{\1@% W (O/ O)
(9°) 3 7

Se il vettore & applicato altrove, questi due numeri comunque deter-
minano, data la coda del vettore, dove cadra la punta del vettore.
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§1.13. Esercizio. Disegna i vettori con le seguenti coordinate: v =
(1,1), W =(0,3), u=(2,-1), k= (—1,-1).
Poi, disegna tu tre vettori e determinane le coordinate.

§1.14. Coordinate di un vettore applicato. Questo concetto lo
abbiamo gia visto in §1.12, ma vale la pena sottolinearlo.

Un vettore nel piano cartesiano ¢ determinato da due numeri, le sue
due coordinate. Un vettore applicato nel piano cartesiano ha bisogno
del doppio di coordinate: due coordinate del vettore e due coordinate
per il suo punto di applicazione.

Domanda: dato un vettore v = (a,b) applicato nel punto (z,y), la
sua coda é nel punto (z,y) per definizione, ma dove sta la sua punta?

Domanda: possiamo immaginare vettori anche nello spazio 3D. Quan-
te coordinate ci servono per determinare un vettore nello spazio tridi-
mensionale? Quante coordinate per un vettore applicato nello spazio
tridimensionale?

§1.15. Esercizio. Disegna i vettori v, W, u e k dall’Esercizio in §1.13
applicati al punto P = (2, 3).

§1.16. Somma di vettori in coordinate. Abbiamo visto come si
sommano i vettori usando il metodo “punta-coda” in §1.6. Con le
coordinate, la somma di vettori diventa molto facile: basta sommare
i numeri! Per esempio, se abbiamo due vettori v = (v,,v,) e @ =
(wy, wy), possiamo trovare la somma ¥ + @ facendo

T4+ W = (g, 0y) + (Wg, wy) = (Vg + Wy, vy + wy).
Per esempio,
(2,4) +(1,2) = (3,6).

A questo punto la lettrice diligente dovrebbe riflettere sul perché
sommare le coordinate sia equivalente a eseguire il metodo “punto-
coda’.

§1.17. Esercizio. Si prendano i vettori dall’esercizio in §1.13 e si
facciano almeno tre somme, sia con il disegno che con le coordinate.
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§1.18. Moltiplicazione scalare per vettore in coordinate. Ab-
biamo visto in §1.9 come moltiplicare un vettore per uno scalare. Se si
hanno le coordinate del vettore, questa moltiplicazione é semplicemente
la moltiplicazione delle coordinate!

Per esempio, se abbiamo un vettore ¥ = (v,, v,) e uno scalare t € R,
allora

0 = t(vg, vy) = (tvg, tvy).
Per esempio,
2(2,-3) = (4,-6).
Si guardi con attenzione la seguente riga ti conti:
T+ U= (v, vy) + (U, vy) = (Vg + vy, vy + vy) = (20, 2v,) = 20.

§1.19. Esercizio. Si prendano tre numeri reali e tre vettori in coor-
dinate e si facciano almeno tre moltiplicazioni scalare per vettore.

§1.20. Il modulo in termini delle coordinate. Il modulo di un
vettore si puo ricavare dalle coordinate usando il teorema di Pitagora:!

se ¥ = (a,b), allora v = ||¥]| = Va® + b2

?H@J’ofé &T@:
— -~
Il{v-uxz 37'\‘&) .
Quind:

................................ - (71 - (3 b*
a

§1.21. Esercizio. Calcola il modulo dei vettori v, W, 4 e k dall’Eser-
cizio in §1.13.

§1.22. Esercizio. lo ti do due vettori:
ey = (1,0), é =(0,1).
Trova due scalari a,b € R tali per cui
aey + bey = (4, —5).

Possiamo interpretare questo problema cosi: immagina che i due
vettori €1 e € siano le uniche due direzioni in cui puoi muoverti. Se ti
muovi in direzione €] per una distanza a, significa che dal punto in cui
sei vai fino alla punta di a€;. Quindi, partendo dall’origine (0,0) devi
arrivare al punto (4, —5) seguendo un po’ €] e un po’ €. Il problema
ti chiede di trovare quanto devi seguire I'uno e l'altro vettore.

] Teorema di Pitagora dice che: “In ogni triangolo rettangolo, la somma dei

quadrati costruiti sui cateti € uguale al quadrato costruito sull’ipotenusa.” Qui per
“quadrato” si intende “I’area del quadrato”.
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§1.23. Esercizio. Io ti do due vettori:
v=(2,1), @=(-1,2).
Trova due scalari a,b € R tali per cui

av + b = (5, —2).

§1.24. Versori. Un wversore & un vettore di modulo 1. I versori si
indicano spesso con un cappuccio al posto della freccia: se un vettore
v ha modulo 1, si puo anche indicare come 0.

La caratteristica speciale dei versori € che, se @ ¢ un versore e t € R,
allora

[¢all = 1¢]

§1.25. Esercizio. Supponi che v sia un vettore non nullo. Trovat € R
e un versore U tale che v = tu.

§1.26. Esercizio. Considera i due vettori
er = (1,0), é =(0,1).

Sono dei versori?
Per quali a € R e b € R il vettore a€; + bey € un versore?

§1.27. Scomposizione dei vettori. La scomposizione di un vettore
non € altro che la somma di vettori, solo vista dal di dietro. Per esem-
pio, pensando ai numeri invece dei vettori, sappiamo che 5+ 2 = 7.
Allora sappiamo che il sette si scompone (per la somma) in cinque e
due. Ma non ¢é I'unica scomposizione, per esempio possiamo scomporre
il sette in quattro e tre, perché 4 + 3 = 7.

Con i vettori & simile. Abbiamo visto come, dati due vettori @ e ¥,
possiamo farne la somma w = @+ . Ora facciamo il contrario: dato un
vettore w, vogliamo trovare due altri vettore ¢ e ¢ tali che W = @ + .
Questa é una scomposizione del vettore @ nei due @ e 0.2

La scomposizione diventa interessante se sono prefissate due rette,
ossia: Dato un vettore w e due rette r e s, vogliamo trovare due vettori
1 e U tali che r & la direzione di « e s é la direzione di .

2Problema per la lettrice impegnata: dato un vettore w e un altro vettore v,
trova un vettore u tale che & + v = w/? Con i numeri invece dei vettori: dati due
numeri z e y, trova un numero z tale che z =z 4+ y.
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Il modo geometrico di trovare questi due vettori ¢ molto sempli-
ce. Prendiamo una delle due rette, per esempio s, e la trasliamo
parallelamente alla punta di @, cosi:

A questo punto, u ¢ il vettore che va dalla coda di @ al punto di in-
tersezione di r e s traslato, e ¥ é il vettore che va da questa intersezione
alla punta di w. Per costruzione, abbiamo proprio che la direzione di
i ¢ s, la direzione di ¥ ¢ W e U + U = .
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Questo ¢ un modo geometrico di fare la scomposizione. Se le due
rette sono perpendicolari tra loro, possiamo usare della trigonometria.
Se a & 'angolo tra w e la retta r, allora

u = wcos(a), v = wsen(a).
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NB: In questo esercizio dovresti notare che il risultato della scompo-
sizione dipende dalla scelta di entrambe le rette. Per esempio, nei due
casi a destra, il vettore é lo stesso e una delle due rette ¢ la stessa, ma
cambia la retta che va verso I’alto: questo provoca una scomposizione
diversa.

§1.29. La scomposizione delle somme. Uno dei motivi per scom-
porre i vettori ¢ che aiuta a sommare i vettori. Supponiamo di avere
due vettori ¥ e w di cui vogliamo fare la somma.

W -
v

Scegliamo due rette:

Abbiamo cosi U = U] + Uy € W = W +ws. Portiamo la nostra attenzione
alle sole componenti v, U, W; e Wy, € sommiamo quelle lungo ciascuna
retta, ossia quelle che condividono la direzione:
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1

- ]
]

1

1

]

Queste somme sono si eseguite con il metodo punto-coda, ma essendo
lungo la stessa retta stiamo in pratica solo sommando i moduli (con
segno dato dal verso). Insomma, sommare vettori che hanno la stessa

direzione € quasi come sommare numeri.
A questo punto abbiamo v; + W, e v, + ws. Algebricamente, stiamo

facendo questo:
U4 = (171+?72)+(7~U1+U72)

= (W + W) + (Vp + Wa).
Effettivamente, anche dal disegno vediamo che w; + w; e U5 + W sono

le componenti di ¥+ @ lungo le due rette.

In altre parole
(1) ‘prima sommo, poi scompongo = prima scompongo, poi Sommo.

Questa regola (1) vale anche quando abbiamo piu di due vettori.
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2. STATICA

§2.1. Introduzione. Ci occuperemo di studiare sistemi fermi. Per
“sistemi” intendiamo gruppi di oggetti, come per esempio un candela-
bro appeso tramite una carrucola e controbilanciato da una molla. Se
un sistema € fermo, significa che ¢ in equilibrio — per definizione di
equilibrio. Vogliamo trovare le condizioni che rendono equilibrato un
sistema.

Il nostro metodo di osservazione sara il seguente:

(1) Facciamo un diagramma delle forze, ossia un disegno del sistema
con dei vettori applicati che rappresentano le forze esterne. A
questo punto dovremo usare immaginazione e accettare un certo
grado di incertezza.

(2) Per ciascun oggetto del sistema, studiamo le forze che agiscono
su di esso e applichiamo le leggi di equilibrio del punto materiale
e del corpo rigido.

(3) A questo punto abbiamo tutti gli elementi per dedurre ogni
proprieta di equilibrio del sistema.

Messo cosi, questo piano di lavoro € astratto, ma lo terremo come
vademecum.

§2.2. La forza. La forza ¢ una grandezza fisica vettoriale che non si
vede, ma ha effetti visibili (questa non ¢ una definizione). La sua unita
di misura ¢ il Newton che si denota con N. In relazione alle unita di
misura fondamentali, dobbiamo ricordarci che:

N = kgm/s?
Esempi di forza:

e Il peso é una forza. Noi sperimentiamo il peso costantemente sul
pianeta Terra: esso ¢ la conseguenza della nostra relazione con la
Terra, che ci attrae ad essa e noi attraiamo la Terra a noi. Quando
ci pesiamo sulla bilancia, esprimiamo questa misura in chilogrammi:
tecnicamente, stiamo sbagliando. Il chilogrammo kg ¢ I'unita di mi-
sura della massa. Quindi se dico “lo peso 70 chilogrammi”, dovrei
invece dire “Io ho una massa di 70 chilogrammi”, oppure “lo peso
686,7 Newton”. Nella vita quotidiana non é un problema, perché pe-
so e massa sono direttamente proporzionali e questa proporzionalita
non cambia mai:

Pesosulla Terra — g * Massaa
dove ¢ é l'accelerazione di gravita
)
g =9,81m/s.

e La Luna gira attorno alla Terra, come se Terra e Luna si tenessero
per mano. Cosa le tiene assieme? La stessa forza di gravita che
tiene noi per terra. Che i fatti celesti siano soggetti alle stesse leggi
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dei fatti terrestri ¢ una importante intuizione della fisica. La Legge
di gravitazione universale® afferma che due corpi di massa M e m,
rispettivamente, si attraggono con una forza

M-m

2 )

F=d¢

”

dove r ¢ la distanza tra i (centri di massa dei) due corpi e G ¢ la
costante gravitazionale universale

G =667 x 1071 —.

kg?

e Se schiacciamo o tiriamo una molla, la molla ci restituisce una forza,
detta forza elastica.

e Se una palla ci colpisce, la botta che percepiamo é una forza. Siccome
perd € una forza intensa che dura poco, quella nostra esperienza é
meglio descritta dall’smpulso, che vedremo tra poco.

e Quando avviciniamo due magneti, ’attrazione o la repulsione tra loro
é una forza, chiamata forza magnetica.

e Se strofiniamo un maglione di lana e lo avviciniamo a dei pezzetti di
carta, questi verranno attratti dal maglione e ci rimarranno attaccati.
Anche questa attrazione é una forza: la forza elettrostatica.

e Se proviamo a trascinare un oggetto pesante (per esempio una lava-
trice), faremo un certo grado di fatica. Se perd mettiamo l'oggetto
su un carrellino munito di ruote, riusciremo a trascinare lo stesso
oggetto con grande facilitd. Senza carrellino, la forza di attrito si
opponeva al moto e noi dovevamo vincerla. Con il carrellino, la forza
di attrito ¢ diminuita enormemente.

§2.3. Equilibrio del punto materiale. Un punto materiale ¢ un
punto adimensionale, ossia senza dimensioni spaziali, che ha una sua
posizione e una sua massa.

Un punto materiale & in equilibrio, se e solo se la somma di tutte le
forze agenti su di esso ¢ zero.

Un punto materiale ¢ un’astrazione: non esiste un oggetto che non
occupi un volume. Pero, ci sono situazioni in cui non importa il volume
di un oggetto. Per esempio, se studiamo il moto dei pianeti attorno al
sole, non € importante che dimensioni abbiano e possiamo riassumere
I'intero pianeta Terra, con tutti i casini che accadono su di essa, a un
punto infinitesimo di massa My = 5,972 x 10* kg.

§2.4. Equilibrio del corpo rigido. Un corpo rigido ¢ un oggetto che
ha una massa e una forma rigida, ossia che non cambia.
Un corpo rigido € in equilibrio se e solo se

(1) la somma di tutte le forze agenti su di esso é zero, e

3La legge di gravitazione universale fu formulata da Isaac Newton nel 1687
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(2) la somma di tutti i momenti delle forze agenti su di esso rispetto
ad un punto é zero.

Anche il corpo rigido é un’astrazione, perché nella realta gli oggetti
cambiano forma quando sottoposti a delle forze. In molti casi pero tale
deformazione é talmente piccola da potersi trascurare.

§2.5. Esempio di un sistema in equilibrio. Consideriamo un lam-
padario di massa m = 3kg appeso al soffitto. Vogliamo sapere quale
forza agisce sul soffitto.

Per prima cosa, facciamo un diagramma delle forze:

S S S S S

1“’1
v

Sappiamo che il peso del lampadario ¢ P = gm, dove g € l'accelerazione
di gravita, e sappiamo che il peso del lampadario punta verso il basso.
Cosi abbiamo il peso come vettore P.

In questo diagramma ci sono tre oggetti: il lampadario, il cavo che
tiene il lampadario e il soffitto. Guardiamo un oggetto alla volta.

Primo, il lampadario é fermo, quindi in equilibrio. Questo significa
che la somma delle forze che agiscono sul lampadario deve essere zero.
Quindi ¢’e una forza che bilancia la forza peso: ovviamente é la tensione
T del cavo che tiene il lampadario:
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Ricapitolando, siccome la somma delle forze che agiscono sul lampada-
rio deve essere zero, abbiamo

P+T=0,
ossia T = —P. Cosi, la tensione sul cavo ¢ T'= P = gm ed é opposta
alla forza peso, ossia verso 'alto.

Secondo, il cavo che tiene il lampadario ¢ fermo, quindi la somma
delle forze che agiscono su di esso deve essere zero.

f
=D
$

Ho disegnato due forze sul cavo: una forza T, ad un capo del cavo, e una

forza T, all’altro capo del cavo. Siccome la somma ¢ zero, dobbiamo
avere

—

T,+ T, =0,

1

Vo)

ossia T; = —fg.
Naturalmente, T, = —T". Per questo motivo, abbiamo
T T = (T =T= P

Infine, chiamo F la forza che agisce sul soffitto:

/) I// ) S
=
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Naturalmente, F= —T;, e quindi F=P.

Concludiamo che la forza che agisce sul soffitto ha modulo gm e
punta verso il basso.

NB! 1 soffitto & in equilibrio, perod in questo problema non siamo
interessati alle sue condizioni di equilibrio.

Questo esercizio pud sembrare pedante, ma vuole mostrare come si
propagano le forze grazie ai principi di equilibrio del corpo rigido.

§2.6. La Legge di Hooke. La Legge di Hooke descrive la forza im-
pressa da una molla quando compressa o allungata. Quando una molla
é a riposo ha una sua lunghezza. Se allungata o compressa, denotiamo
con Az la differenza rispetto alla lunghezza a riposo. Per distinguere
se questo scarto € di allungamento o compressione, definiamo il vettore
A come il vettore che ha coda nel punto di riposo della molla e punta
nella posizione attuale della molla:

T g
] olla
'QMMQ% cy:maﬁa

o0 %
B\\vn&b&a.
La legge di Hooke afferma che la forza elastica F impressa dalla molla

F = —kAZ,

dove k ¢ la costante elastica della molla.

La costante elastica dipende dalla molla e va misurata sperimental-
mente. L’unita di misura della costante elastica é g Cosi, una molla
con costante elastica 1N/m da una forza di un Newton per ogni metro
di compressione (o allungamento).
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NB! La legge di Hooke vale solo se lo spostamento Ax é piccolo
abbastanza: se si allunga o contrae la molla troppo, questa subisce
altri fenomeni di deformazione e quindi la legge di Hooke non vale pit.
Per esempio, se si tira troppo la molla si rompe e quindi non esercita

pit alcuna forza.
NB! Una molla esercita una forza su entrambi gli estremi, con la

medesima intensita (ossia modulo), medesima direzione, ma verso op-

posto.
00000000 %,
a ripose
Vho“’.}
‘W nella scatol>

Yorte esercible

e

eserutsbe

meald <& dally sco ola

§2.7. Esercizio. Nei seguenti disegni, sono rappresentate delle molle
sia a riposo che sotto sforzo. Nelle immagini delle molle sotto sforzo,
disegna gli scarti AZ e le forze elastiche F' date dalla legge di Hooke.
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§2.8. Esercizio. Una molla di costante elastica k = 34N/m e di lun-

ghezza a riposo ¢ = 45c¢m é dentro una scatola lunga 30cm. Quali sono
le forze impresse dalla molla sulle due pareti della scatola?
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§2.9. Esercizio. Appendo un corpo di massa m = 13g a una molla
con costante elastica k = 50N/m. La molla a riposo é lunga ¢ = 7cm.
Quanto é lunga la molla quando il corpo é appeso?

§2.10. Esercizio. Lucia e Marco hanno costruito una bilancia casa-
linga. Hanno messo una molla in verticale (un tubo la tiene dritta). In
basso la molla appoggia al tavolo, in alto invece c¢’é¢ una piano su cui
appoggiare gli oggetti da pesare.

Lucia e Marco devono innanzitutto calcolare la costante elastica della
molla. Come fanno? Prova a rispondere prima di continuare a leggere.

Si, fanno cosi: ci appoggiano sopra un corpo di massa m = 100g e
misurano quanto la molla si contrae. La loro misura da Az = lcm.
Quanto vale la costante elastica k della molla?

A questo punto possono provare a pesare un libro di massa M (sco-
nosciuta). Lo appoggiano sulla bilancia e misurano che la molla si
contrae di 3,4cm. Quanto pesa il libro? Quanto vale M?

§2.11. Esercizio. Due molle identiche sono messe dentro a una sca-
tola. La loro costante elastica é k e la loro lunghezza a riposo ¢ £. La
scatola é lunga L e larga H.

Possiamo mettere le due molle in due modi: in serie per il lungo o in
parallelo per il largo. Se le mettiamo in serie per il lungo, quanto quali
forze esercitano le molle sulle pareti della scatola? E se le mettiamo in
parallelo per il largo?

i Serc m ?ara”c l-

HWH%%

Vi
7

L
4 4 4
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Se preferisci avere dei numeri, considera & = 60N/m, ¢ = 10cm,
L = 15cm, H = 8cm.

§2.12. Esercizio. Torniamo alla bilancia descritta in §2.10. Tra Lu-
cia e Marco nasce una diatriba. Lucia sostiene che dentro al tubo ci
siano due molle, una sopra |’altra, identiche tra loro. Marco invece so-
stiene che ci sia una sola molla. Se avesse ragione Lucia, quale sarebbe
la costante elastica delle due molle?

C’¢ un modo, senza aprire il tubo che contiene le molle, di verificare
chi dei due ha ragione??

§2.13. Esercizio (x). Abbiamo due molle di costante elastiche k; e ks,
rispettivamente, e lunghezze a riposo ¢; e ¢5. Vengono messe in serie,
una dopo l'altra, in una scatola di lunghezza totale L. Supponiamo L <
{1 +05 (quindi le molle sono compresse). Nella scatola, misuriamo che la
prima molla ¢ ora lunga x; e la seconda molla ¢ lunga x,. Ovviamente,

:1:1+x2:L.
L

b
o
-

%, X,

(1) (Poco facile) Quanto valgono z; e xo in termini dei dati sulle
molle e L? (Se vuoi numeri: k; = 10N/m, ks = 25N/m, ¢; =
34cm, Uy = 23cm, L = 49cm)

4La risposta ¢ no. Questo ¢ un esempio in cui possiamo fare modelli diversi per
la stessa situazione pratica. In altre parole, possiamo immaginare che dentro al
tubo ci siano una o due molle (con lunghezze e costanti elastiche appropriate), e
comunque dare le stesse previsioni corrette. Se non possiamo aprire il tubo, non
sapremo mai quante molle ci sono dentro. Anzi, magari non ¢’¢ nemmeno una
molla, ma un sofisticato meccanismo elettromagnetico.
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(2) (Meno difficile) Per semplificare, supponi k; = ko = k e {1 =
{5 = (. Quanto valgono x; e x3? (Se vuoi numeri: k = 15N /m,
¢ =20cm, L = 32cm)

(3) (Meno difficile, ma poco facile) Supponi ko = 2k; e ly = ¢5.
Quanto valgono z; e x2? (Se vuoi numeri: k; = 16N/m, ¢; =
19cm, L = 53cm)

§2.14. Esercizio (*x). Un lampadario ¢ appeso al soffitto con due
molle messe a triangolo. Le molle sono identiche, con costante elastica
k e lunghezza a riposo ¢. Il triangolo formato dalle molle ha base L
(lungo il soffitto) e altezza h. Al vertice opposto al soffitto & appeso il
lampadario, di peso P.

I

/]

(1) Queste cinque quantita k, ¢, L, h e P, sono in relazione tra
loro. Scrivere una formula che le mette in relazione. (Con que-
sta formula, potrai rispondere velocemente a tutte le domande
seguenti).

(2) Dati k = 125N/m, ¢ = 1lm, L = 1m, h = 1m, quanto vale P?

(3) Dati k = 125N/m, ¢ = 1m, L = 1m, P = 20N, quanto vale h?

§2.15. Esercizio. Due molle di costante elastica k; e ko rispettiva-
mente, e di lunghezze a riposo ¢; e {5, rispettivamente, sono appese
dopo l'altra al soffitto, in serie. Alla seconda molla, pit1 in basso, viene
agganciata una massa m. Quanto saranno lunghe le due molle?
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§2.16. Esercizio. Inventa tu un esercizio e risolvilo.

§2.17. Una questione di triangoli simili. Nel seguito, studieremo
il piano inclinato e useremo una semplice proprieta dei triangoli simili.
Questa semplice proprieta ci permettera di fare a meno di usare la
trigonometria, presumo non si conosca ancora.

Innanzitutto, due triangoli sono simili se hanno gli stessi angoli.

Chiamiamo ABC' e A’B'C" i due triangoli, dove a lettera uguale cor-
risponde angolo uguale. E una proprieta dei triangoli simili che i lati
corrispondenti siano proporzionali tutti con la stessa proporzione. In
altre parole:

AB AC BC

A3 AC BC

(2)

1

A

A B ¢
D

uindi, se ci viene dato ABC' e un lato di A’B’C’, possiamo trovare
Q ; , P

_—

gli altri due lati di A’B’C’. Per esempio, se ABC' ¢ il triangolo di lati
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AB =3, AC =4e BC =5, e se so che A/B’ = 1, allora

y o iy Ty g
AB 3
€
B'C’ B:CA’B’ §
AB 3

§2.18. Il piano inclinato. Se un oggetto, ad esempio un libro, sta su
un tavolo orizzontale il peso € controbilanciato dalla forza vincolare del
tavolo. Quindi, il libro esercita una forza sul tavolo e il tavolo risponde
con una forza uguale in modulo e direzione e contraria in verso. Questa
forza del tavolo sul libro é chiamata forza vincolare. 11 nome viene dal
fatto che il tavolo & un wvincolo, ossia impedisce il movimento al libro.

-
AF

a2 Il

Supponiamo ora che il tavolo non sia piu orizzontale, ma bensi in-
clinato: il libro & su un piano inclinato. 11 peso del libro ¢ comunque
una forza diretta verso terra, verticalmente. La forza vincolare del ta-
volo invece non puo che essere perpendicolare al piano. Se facciamo la
somma di questi due vettori, non otteniamo zero.

N

A

¢

Ora ti spiego un buon modo di analizzare questa situazione. In-
nanzitutto, prendiamo la retta parallela al piano del tavolo e la retta
perpendicolare al piano del tavolo. Con queste due rette, scomponiamo
le forze come abbiamo imparato in §1.27. Siccome la forza vincolare F
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é perpendlcolare al piano, non c’é niente da scomporre. La forza peso
P invece si scompone nelle due componenti P//, parallela al piano del

tavolo, e P ', perpendicolare al piano del tavolo.

Il peso del libro, infatti, ha due conseguenze. La prima ¢é che il libro
preme sul tavolo: questa forza é P,. La seconda & che il libro tende a
scivolare git lungo il piano: la causa di questo movimento é la forza ]3//.

Siccome il libro non affonda nel tavolo, abbiamo

ﬁl+ﬁ:0,

ossia, la forza vincolare F bilancia P | e quindi F=_pP i

Cosa bilancia la forza ]3//? La risposta dipende dalla situazione. Puo
essere |'attrito, che vedremo tra poco, oppure un filo con un contrap-
peso, oppure una molla, o tutte queste e tante altre cose insieme. Se
niente bilancia la forza 15//, o se non ¢ abbastanza bilanciata, allora il
libro scivolera giu dal tavolo.

§2.19. Esempio. Un carrello sta su un piano inclinato. Descriviamo
questo piano inclinato con un triangolo rettangolo che ha cateto di base
pari a 4m, cateto di altezza pari a 3m e quindi ipotenusa pari a 5m. Il
carrello ha una massa M = 15kg. Al carrello ¢ agganciato un filo che,
parallelo al piano inclinato, arriva in cima al piano inclinato e quindi
scende verticale con una massa m appesa. Quanto deve valere m per
tenere in equilibrio il carrello?

Risolviamo I’esercizio insieme. Innanzitutto facciamo un disegno con
le forze principali:
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Le forze disegnate sono:

° ﬁp: il peso del pesetto. Il modulo di questa forza ¢ P, = gm,
dove g ¢é l'accelerazione di gravita. Questa forza ¢ verticale e

punta verso il basso.
° T la tensione del filo attaccato al pesetto. Siccome il pesetto

é fermo e le uniche forze che agiscono su di esso sono P e T
possiamo gia dire che Pp + Tp =0, ossia

Quindi il modulo di fp e T, = gm.

o P il peso del carrello. 11 modulo di questa forza ¢ P. = gM.
Questa forza é verticale e punta verso il basso.

e F,: la forza vincolare del piano inclinato. Questa forza ¢é per-
pendicolare al piano inclinato, e il suo modulo dipende dal peso

del carrello.
e T.: la tensione del filo attaccato al carrello. Siccome la tensione

lungo il filo non cambia modulo®, possiamo gia dire che T, =
T, = gm.

Studiamo in dettaglio la situazione delle forze sul carrello:

%a carrucola non ha attrito
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Tre forze agiscono sul carrello: P,., F, e T,.. Siccome il carrello é in
equilibrio abbiamo

(3) B+ F +T.=0.

Scomponiamo P. nelle due componenti parallela 13// e perpendicolare
pl al piano inclinato. Usando questa scomposizione in (6), otteniamo

0=P.+F +T,
=Py + P +F,+1,
= (Py+1T.)+ (PL.+F,).
Per quello che abbiamo imparato in §1 29, sappiamo che i vettori

P// +T. e P, +F, sono le componenti di P+FE+T. lungo le due rette.

Siccome P+ F, + 1. = 0, allora queste componenti devono essere zero,
e quindi otteniamo

ﬁ//—l—fc IO,
P, +F, =0.

Di queste due equazioni, quella che pit ci interessa ¢ la prima. Infatti,
Py+T, = 0 implica che il modulo di 7, (che sappiamo essere T, = gm),
¢ uguale al modulo di ]3//:

(4) gm = Py.

Siccome m ¢ l'incognita da determinare e siccome Py dovremmo saper-
lo calcolare, questa dovrebbe darci la risposta.

6In (1) abbiamo imparato che “prima sommo, poi scompongo = prima
scompongo, poi sommo”.
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Dobbiamo calcolare ﬁ// e lo facciamo usando un po’ di sana geometria
euclidea, quella che conosciamo da almeno duemiladuecento anni. Ho
provato a riassumere in §2.17 quello che ci serve.

Se guardiamo bene lo schema delle forze sul carrello, e in particolare
la scomposizione della forza peso, noteremo la presenza di due triangoli
simili:

4m b

Il triangolo piccolo é quello dato dalla scomposizione della forza peso,
quindi i suoi lati sono P, Py e P,. Il triangolo piu grande invece ¢
quello che descrive il piano inclinato, e i suoi lati sono la base b = 4m,
I’altezza a = 3m e l'ipotenusa ¢ = 5m.

Esercizio: individua gli angoli uguali.

Dopo che hai provato a individuare gli angoli uguali’ potrai usare (2)
e dire che

Py P
a i’
e quindi
P M 3
5 Py="a=2"3m="2gM.
©) I T e T s
Finalmente possiamo concludere usando (4) e (5):
3
— 2gM
gm 59 )
cloe
3 3
= -M = -15kg = 9kg.
m 5 5 g g

"Tnnanzi tutto, nota che in entrambi i triangoli ¢’¢ un angolo retto. Poi, nota
che i e Py sono paralleli, e che a e P sono anche paralleli. Quindi I’angolo tra i
e a deve essere uguale all’angolo tra Py e P. Infine, rimane un angolo in ciascun
triangoli, che quindi questi due angoli devono essere uguali. Il disegno é:
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§2.20. Stesso esempio, meno parole. Nel precedente paragrafo §2.19,
ho scritto tanto perché desidero mostrare il ragionamento nella sua in-
terezza. Quello ¢ quel che dovrebbe succedere nella tua testa quando
affronti un problema di fisica. Pero, quando ti chiedo di risolvere un
problema in una verifica, non hai il tempo necessario per scrivere tutte
quelle cose: il pensiero ¢ molto, molto piu veloce della penna (o della
tastiera). Devi essere sintetico nella scrittura, e qui ti mostro come io
descriverei lo stesso problema con meno parole. Non essere pero sinte-
tico nel pensiero!

Innanzitutto facciamo un disegno con le forze principali:

Le forze disegnate sono:

° _'p: il peso del pesetto. P, = gm, g ¢ 'accelerazione di gravita.

° T;: la tensione del filo attaccato al pesetto. Siccome il pesetto
é_‘fermo: ﬁp + fp =0, quindi T}, = gm.

e P.: il peso del carrello. P. = gM.

° ﬁvz la forza vincolare del piano inclinato.

° fcz la tensione del filo attaccato al carrello. Siccome la tensione
lungo il filo non cambia modulo: P, = gM.

Le forze sul carrello:
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Siccome il carrello ¢ in equilibrio:
(6) P+ F,+T.=0.

Scomponiamo ]36 nelle due componenti parallela 15// e perpendicolare
P, al piano inclinato. Quindi:

ﬁ/+fc =0,
P, +F, =0.

Quindi:
(7) P, =T..

Per calcolare ﬁ/ usiamo la presenza di due triangoli simili:

=

b

dove b =4m, a = 3m e ¢ = dm.
Per la proporzionalita tra lati corrispondenti in triangoli simili, ot-
teniamo
Py P

-

a (4
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e quindi
P gM 3
®) T s T Y
Finalmente possiamo concludere usando (7) e (8):
3
— 2gM
gm 59 )
cioe
3 3
= —M = —15kg = 9kg.
m 5 5 g g

§2.21. Esercizio. Un carrello sta su un piano inclinato. Descriviamo
questo piano inclinato con un triangolo rettangolo che ha cateto di ba-
se pari a 24m, cateto di altezza pari a 7m. Il carrello ha una massa
M = 23kg. Al carrello ¢ agganciato un filo che, parallelo al piano in-
clinato, arriva in cima al piano inclinato e quindi scende verticale con
una massa m appesa. Quanto deve valere m per tenere in equilibrio il
carrello?

§2.22. Esercizio. Un carrello sta su un piano inclinato. Descriviamo
questo piano inclinato con un triangolo rettangolo che ha cateto di base
pari a 4m, cateto di altezza pari a 3m e quindi ipotenusa pari a 5m. Il
carrello ha una massa M = 20kg. Al carrello é agganciata una molla
con costante elastica & = 250N /m. Di quanto si allunga la molla?

Im

4 m

§2.23. Esercizio. Inventa un esercizio e risolvilo.

§2.24. L’attrito. Quando un oggetto & premuto contro una superficie
subisce una forza d’attrito (radente). La forza d’attrito si oppone al
moto con una intensita che dipende dalla forza a cui si oppone. Per
esempio, se un baule sta sul pavimento senza che nessuno lo spinga, la
forza d’attrito é nulla. Se pero provo a spingerlo, inizialmente il baule
non si sposta: la mia spinta viene controbilanciata dalla forza d’attrito.

Se aumento gradualmente la mia spinta, ad un certo punto il baule
si sposta. Cosa succede? La forza d’attrito tra baule e pavimento puo
raggiungere un valore massimo. Se io spingo con una forza superiore a
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quel valore massimo, la mia spinta vincera sulla forza d’attrito e quindi
il baule si muove.

La forza d’attrito statico massimale F, nax € direttamente proporzio-
nale alla forza che preme 1'oggetto contro la superficie, ossia

Fa,max - Mana

dove F), ¢ il modulo della forza perpendicolare che preme 1'oggetto
sulla superficie, mentre la costante 1 (“mii esse”) si chiama coefficiente
d’attrito statico e dipende dalle due superfici in contatto. Il coefficiente
d’attrito & un numero puro, ossia non ha unita di misura.

o
H

G
Fu

§2.25. Esempio. Un libro sta su un tavolo orizzontale e viene pre-
muto dalla mia mano. Il peso del libro ¢ P mentre la forza impressa
da me & Fano. Il coefficiente d’attrito statico tra libro e tavolo & .
Quanto devo spingere il libro perché si scivoli lungo il tavolo?

La risposta ¢ semplice. Siccome la forza totale perpendicolare al
tavolo ¢ la somma del peso e della forza impressa dalla mia mano,
ottengo F,, = P + Flao. Per poter smuovere il libro devo spingere
con una forza maggiore della forza d’attrito massimale, ossia Fj max =
,uan = ,US(P + Fmano)-

Per esempio, se s = 0,23 il peso ¢ P = 5N e io premo con Fian, =
4.5 N, allora la forza necessaria per smuovere il libro é

Fomax = f1s(P + Finano) = 0,23(5N + 45N) = 2,185 N.

Per referenza, 2,185 N ¢ il peso di un oggetto di massa 223 g circa.
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§2.26. Esercizio. Studiamo la situazione dell’esempio in §2.19, ma
con 'aggiunta dell’attrito statico.

Un carrello sta su un piano inclinato. Descriviamo questo piano
inclinato con un triangolo rettangolo che ha cateto di base pari a 4m,
cateto di altezza pari a 3m e quindi ipotenusa pari a 5m. Il carrello ha
una massa M = 15kg. Al carrello é agganciato un filo che, parallelo
al piano inclinato, arriva in cima al piano inclinato e quindi scende
verticale con una massa m appesa. Il carrello ha le ruote bloccate
e quindi tra carrello e piano c¢’é una forza d’attrito con coefficiente
d’attrito statico ps = 0,2.

Quanto deve valere m per tenere in equilibrio il carrello?

§2.27. Esercizio x. Abbiamo due corpi di massa m ciascuno appog-
giati su un piano. Il coefficiente d’attrito statico tra i corpi e la super-
ficie & us. Le due masse sono a distanza L e sono unite da una molla.
La molla ha lunghezza a riposo ¢ e costante elastica k.. Quanto vale
L al massimo prima che i corpi vengano avvicinati dalla molla? In
altre parole, qual é la distanza massima L., tra i due corpi per cui
rimangono fermi?
L

oo |200000000 —{

Per avere dei numeri: m = 0,935kg, pus = 0,35, £ = 10cm, k., =
115N/m.
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3. CONSERVAZIONE DELLA QUANTITA DI MOTO

§3.1. Introduzione. Hai studiato per un anno all’'universita di Au-
stin, in Texas, e finalmente torni a casa. Arrivi da Malpensa con il
treno a Rovereto e la tua famiglia ti aspetta in stazione. La tua sorelli-
na ti corre incontro e ti salta addosso abbracciandoti forte. Anche tuo
papa, sopraffatto dall’emozione, ti corre addosso. Se I'impatto con la
sorellina é stato dolce, tuo papa ti stende. Perché? Siccome hai studia-
to fisica a Austin, e le leggi fisiche valgono 1a quanto qua, tu sai che, a
pari velocita, tuo papa ha piu quantita di moto della tua sorellina.

In questa unita studieremo la conservazione della quantita di moto
e gli urti.

§3.2. Conservazione della quantita di moto. Un corpo che ha
massa m e velocita v, ha quantita di moto

(9) p=mu.

Il principio della conservazione della quantita di moto dice che se
la somma delle forze agenti su un sistema & zero, la quantita di moto
totale del sistema ¢é costante.

§3.3. Esempio. Il piccolo Pietro si ¢ messo dentro un carrello della
spesa. La massa di Pietro ¢ m, = 34kg e la massa del carrello ¢
m. = 12kg. Il carrello ¢ fermo. Poi Pietro prende un pollo di massa
m, = 1,3kg e lo lancia fuori dal carrello. La velocita del pollo ¢ v, =
1,3m/s. Con sorpresa di Pietro, il lancio del pollo fa muovere il carrello
nella direzione opposta a velocita v..

(1) Quanto vale v,?
(2) Il pollo cade nel carrello: dopo che il pollo ¢ caduto nel carrello,
la velocita di questo & v/. Quanto vale v..?
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§3.4. Esercizio. Due carrellini di massa m ciascuno sono tenuti fer-
mi su dei binari a una distanza L 'uno dall’altro. Tra loro c¢’¢ una
molla compressa. I due carrellini vengono lasciati andare: se un carrel-
lino raggiunge velocita v, quale sara la velocita raggiunta dal secondo
carrellino?

v

7

ml M,_

= P

<

§3.5. Esercizio. Due carrellini di massa m; e mq rispettivamente sono
tenuti fermi su dei binari a una distanza L 1'uno dall’altro. Tra loro
c’é una molla compressa. I due carrellini vengono lasciati andare: se
un carrellino raggiunge velocita v, quale sara la velocita raggiunta dal
secondo carrellino?

§3.6. Esercizio. Due carrellini di massa m; e my rispettivamente sono
tenuti fermi su dei binari a una distanza L 1'uno dall’altro. Tra loro c’e
una molla compressa. La lunghezza a riposo della molla é £ e la costante
elastica della molla ¢é k.. I due carrellini vengono lasciati andare: quale
sara la velocita raggiunta da dai due carrellini?

[Suggerimento: hai due incognite (le due velocita), quindi ti servo-
no due equazioni. La conservazione della quantita di moto ti da una
equazione. Devi usare la conservazione dell’energia per ottenere una
seconda equazione. |

§3.7. Esercizio. Un carellino di massa M sta fermo su dei binari.
Sul carrellino ¢ montata uno scivolo di altezza h e in cima allo scivolo
sta una pallina di massa m. La pallina rotola giu dallo scivolo e la-
scia il carrellino con velocita perfettamente orizzontale. Che velocita
raggiungono carrellino (vy/) e pallina (v,,)?
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NB! In questo esercizio ¢ importante notare che la quantita di moto
non si conserva, perché c’é una forza esterna che agisce sul sistema: la
forza di gravita. Pero, la forza di gravita agisce verticalmente. Quindi
nella direzione orizzontale la quantita di moto si conserva.

§3.8. Esercizio. Rhtii ¢ un alieno con un’astronave a molla. L’astro-
nave con Rhtii e tutto quanto ha massa totale M e sta viaggiando a
velocita v. Per frenare, Rhtii lancia un proiettile nella direzione di v.

(1) Se il proiettile ha massa m, a che velocita deve essere lanciato
perché Rhtii si fermi?

(2) Se il proiettile viene lanciato usando una molla di costante ela-
stica k., quanto questa molla deve essere compressa per lanciare

il proiettile?
’\/Sﬂ N —
o =

N N
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§3.9. Esercizio. Annamaria vuole misurare la velocita di un proiettile
quando esce da un fucile. Siccome il proiettile viaggia molto veloce e
la sua velocita é difficile da misurare, decide di costruire il seguente
marchingegno. Mette il fucile su un carrello di massa M molto grande
(compresa la massa del fucile). Quindi, con il carrello fermo ma libero
di muoversi, fa sparare il fucile parallelamente ai binari del carrello e
misura la velocita V' del carrello dopo lo sparo. Se il proiettile ha massa
m, quanto veloce é stato sparato?
Se vuoi dei numeri: M = 34kg, V' = 0,3m/s, m = 53g.

§3.10. Urti. Un urto tra due o pitl corpi ¢ un urto, uno scontro, una
interazione veloce e confusa. E molto difficile studiare un urto nel
dettaglio, ma possiamo fare una buona analisi del prima e del dopo.
Per esempio, se due carrelli si scontrano a velocita v ciascuno, dopo
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I'urto i due carrelli avranno certe velocita v; e vy. Di per se, non si
possono prevedere queste nuove velocita senza ulteriori informazioni.
Pero ci sono delle regole che devono essere soddisfatte.

In tutti gli urti viene rispettato il principio della conservazione della
quantita di moto. Noi considereremo per lo pitt urti in assenza di forze
esterne. Di fatti, se pure ci possono essere forze esterne, nei momenti
immediatamente prima e dopo un urto queste sono trascurabili rispetto
alle forze impegnate dall’urto stesso. Per questo motivo, la quantita
di moto si conserva tra (immediatamente) prima e (immediatamente)
dopo l'urto.

Non tutti gli urti conservano ’energia cinetica. Solitamente, parte
dell’energia cinetica si trasforma nell’'urto in energia termica dovuta
alla deformazione dei corpi. Per esempio, se lascio cadere un pallone
per terra, dopo il rimbalzo non tornera all’altezza iniziale: lo scarto
di altezza corrisponde all’energia persa nel rimbalzo. Infatti, durante
I'impatto con il terreno, il pallone si deforma e questa deformazione
consuma energia.

Pero, ci sono molte situazioni in cui ’energia cinetica persa nell’urto
é trascurabile ai fini pratici. In questi casi, possiamo assumere che
I’energia cinetica si conserva.

Per chiarezza, distinguiamo tre tipi di urti:

(1) Urti elastici, in cui l'energia cinetica prima e dopo l'urto ¢ la
stessa.

(2) Urti anaelastici, in cui I'energia cinetica non si conserva.

(3) Urti perfettamente anaelastici, in cui i due corpi che si scontrano
rimangono uniti dopo l'urto.

Vedremo negli esempi che nel caso di urti elastici e perfettamente
anaelastici saremo in grado di prevedere le velocita dopo 'urto.

§3.11. Esempio: urto perfettamente anaelastico. Due carrelli
stanno sugli stessi binari e corrono 1'uno contro l'altro a velocita v.
Supponendo che le masse dei carrelli siano m; e ms, e che l'urto sia
perfettamente anaelastico, quale sara la velocita dei due carrelli attac-
cati dopo l'urto?
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Sappiamo che deve conservarsi la quantita di moto. Quindi, se
chiamiamo v’ la velocita dopo 1'urto, avremo

(10) myv — mav = (my + ma)v/,

dove myv ¢ la quantitd di moto del primo carrello (che viaggia con
verso positivo), —msgv é la quantita di moto del secondo carrello (che
viaggia con verso negativo), e (m; + ms)v’ é la quantita di moto dei
due carrelli uniti dopo l'urto.

NB! La legge di conservazione della quantita di moto che abbiamo
scritto in (9) ¢ una equazione vettoriale. Per questo motivo dobbiamo
tenere un occhio sul segno delle velocita: se corre in un verso ¢ positiva,
se punta nell’altro verso ¢ negativa.

Dalla relazione (10) otteniamo immediatamente che

miv — My my1 — Mo

mi + Mo mi + ma

/

Per esempio, se m; = mg, allora v’ = 0. In altre parole, se due carrelli
di massa uguale si scontrano in modo completamente anaelastico, allora
rimarranno fermi li dove si sono scontrati.

Se invece m; > my, quindi il primo carrello € pitt massivo del secondo,
allora v’ > 0. Se perd m; < msy, allora v" < 0. In altre parole, se i due
carrelli hanno masse diverse, dopo lo scontro proseguiranno nel verso in
cui andava il carrello piti pesante. Penso sia quello che ci aspettavamo,
non credi anche tu?

§3.12. Esercizio. Due carrelli stanno sugli stessi binari e corrono 1'u-
no contro 'altro a velocita v, e v9. Le masse dei carrelli sono rispettiva-
mente my e my. Supponendo che 1'urto sia perfettamente anaelastico,
quale sara la velocita dei due carrelli attaccati dopo l'urto?
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§3.13. Esercizio. Due carrelli stanno sugli stessi binari e corrono 1'u-
no contro l’altro a velocita v. Le masse dei carrelli sono rispettivamente
my e my. L’urto ¢ anaelastico, e viene misurata la velocita v| del pri-
mo carrello dopo 'urto. Quale é la velocita del secondo carrello dopo
I'urto?

§3.14. Esercizio. Due carrelli stanno sugli stessi binari e corrono 1'u-
no contro l’altro a velocita rispettivamente v, e vy. Le masse dei carrelli
sono rispettivamente m; e my. L’urto € anaelastico, e viene misurata
la velocita v} del primo carrello dopo 'urto. Quale ¢ la velocita del
secondo carrello dopo 1'urto?

§3.15. Esempio: urto elastico di due carrelli — parte prima.
Due carrelli stanno sugli stessi binari e corrono 'uno contro l'altro a
velocita rispettivamente v; e vy (possibilmente con segno). Le masse

dei carrelli sono rispettivamente m; e mo. L’urto € elastico. Quale
velocita avranno i due carrelli dopo 1'urto?

Denotiamo con v} e v4 le velocita dei due carrelli dopo I'urto. Ab-
biamo due incognite, quindi ci servono due equazioni. Dedurremo
due equazioni dal principio di conservazione della quantita di moto
e, siccome l'urto ¢ elastico, dalla conservazione dell’energia cinetica.

Per esprimere la quantita di moto, abbiamo bisogno di orientare la
direzione lungo cui corrono i due carrelli. Quindi scegliamo un versore
€ che punta la direzione di moto del primo carrello. Cosi, v7 = v1€ e
?72 = Ugé

La quantita di moto dei due carrelli prima dell’urto ¢

P'=myv] + mavy = (Mqvg + mavy)é.
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La quantita di moto dei due carrelli dopo 'urto é
P = miv] 4+ math = (miv, + moth)é.

Nota che v} e v}, possono avere segno negativo: non lo sappiamo ancora.

I1 principio di conservazione della quantita di moto implica che p'= ];’
e quindi

!/ /
(11) myvy + Moty = Myv; + Mavy.

Questa é la prima equazione di cui abbiamo bisogno.
L’energia cinetica del sistema prima dell’urto ¢

1 1
Ec = 57711?)% + 57712’1)%,
metre dopo 'urto é
1
Eé = §m1v£2 + émgvf.
Siccome l'urto ¢ elastico, abbiamo E, = E, cioé
1 1 1
(12) §mlvf + §mzvg = émlvf + §m2”U§2.

Questa ¢ la seconda equazione di cui abbiamo bisogno.
Quindi v} e v} sono le soluzioni delle due equazioni (11) e (12) messe
a sistema, cioé

/ /
miv1 + Moy = M1V + Moy,

1 2 1 2 __ 1 2 1 2
§m11)1 + §m2v2 = Emﬂ)l + §m21)2 .

(13)

Risolvere questo sistema di equazioni € un problema puramente di ma-
tematica. Lo faremo piii sotto, ma prima proviamo a risolverlo in alcuni
casi semplificati.

§3.16. Esempio: urto elastico di due carrelli — parte seconda.
Risolviamo il sistema (13) con alcune ipotesi ulteriori. Assumiamo che
m =mj =My ev = v, = —0y. In questo caso, abbiamo m v, +mavy =
0 e $myvf + 3mev3 = mo?. Quindi il sistema di equazioni (13) diventa
- / /
0 = mv] + muy,

mu? = mu? + smo

12
2 2

che, dividendo per m entrambe le equazioni (NB: m # 0), é equivalente
a

I /
0 =v] + vy,

2 __ 1,72 1,72
v = 507 + 5V5 .

Dalla prima equazione otteniamo vy = —vj. Quindi la seconda equa-
zione diventa v? = v?, ossia |[vj| = v. Cosi, abbiamo ottenuto due
soluzioni: una in cui v{ = v e vj = —v, e altra in cui vj = —v e

vy = v. Di queste due soluzioni (matematiche) del sistema di equazio-
ni, una ha senso fisico, l'altra no. Infatti, la prima soluzione (v{ = v
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e vy = —v) descrive una situazione in cui i due carrelli si sono attra-
versati e poi proseguono dritti: questo é fisicamente impossibile. La
seconda soluzione invece (v] = —v e vy = v) descrive i due carrelli che

scappano via in versi opposti rispetto a come sono arrivati: questo €
quello che ci aspettiamo.

§3.17. Esempio: urto elastico di due carrelli — parte terza.
Risolviamo il sistema (13) con alcune ipotesi ulteriori. Assumiamo che
m = my = ms. In questo caso, dividendo per m entrambe le equazioni
(NB: m # 0), il sistema di equazioni (13) diventa

{Ul + vy = ’Ull + Ué,

1,2 1,2 1,2

57}1 + 5’02 — _Ul + ’UQ

Dalla prima equazione otteniamo vy, = v; + vy — v}. Usando questa
relazione nella seconda equazione, otteniamo

1 1 1 1
(14) 51}% + 51}; 21/12 + 5(01 + vy — v))%
Qua sembra che dobbiamo fare un po’ di conti. Ricordiamoci che I'in-
cognita qui ¢ v}, tutto il resto sono quantita date dal problema Quindi
per aiutarci nei conti, diamo dei nomi. Chiamiamo A = —vl —i—
B = vy 4+ vy. Cosl, I'equazione 14 diventa

A=+ S (B—h)

Svolgiamo i conti:

1, 1
A= v+ (B —v)*

2 2
]‘ / ]‘ / 12
5 1 + 2(B — QBUI + (%] )
1 1 1
= (5 + 5)1}1 — Bvi —+ 532

1
Quindi, I’equazione (14) ¢ equivalente a
1

Questo é un polinomio di secondo grado in v} e quindi le sue soluzioni
SOno:

B+ \/B2—4(1B*-A) B+IA_B°
2 B 2 '
Sostituendo A e B con i loro valori, otteniamo

, vt v E (v — vy)
Ul:l:_ 2 .

Ul:t -
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Come prima, abbiamo ottenuto due soluzioni:
V] = V1 € U = —y, oppure
V] = —Ug € Uy = vy.
La prima soluzione non ha senso fisicamente perché suppone che i due

carrelli si siano attraversati. Quindi succede la seconda: nello scontro,
i due carrelli “si scambiano le velocita”.

§3.18. Esempio: urto elastico di due carrelli — parte quar-
ta. Ritorniamo al sistema di equazioni (13), senza ipotesi ulteriori.
Denotiamo p = myvy + movy € E = %mlv% + %mgvg, cosi che (13)
diventa
P = mlvi + mgvé,
E = —mlvl + mgv
Dalla prima equazione otteniamo
, P —my)
/l)2 _— .
mo
Usando questa relazione nella seconda equazione, otteniamo
1 1 P —myv \?
B = gmff oy (T
2 L T2
1, 1 (P2 +miv? — 2m1Pvi)
= -—mvy + -m
g L T g m2

2 2,72 /
1 n P mivy my P}

2m2 2m2 mo

Quindi, v} é soluzione dell’equazione quadratica:

2
2 ml v P
- —— —E=0,
2 - (m1 + mg)vl m2 + ng

1m1

e cosl

2mo

Pt [(Pms) —almmy 4 my) (L2 - B)

/ —
Uis = (m1 + mg)

P \/P2< le m1+m2) >—|—2E (m1+m2)
+
my + Mo m_2<m1 + m2>
P, mL(2(m +mo) B — P?)

mq +m2 Z—;(ml +m2)
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Inserendo i valori di £ e P di nuovo in questa espressione, otteniamo
(dopo qualche conto)
2(m1 -+ m2)E — P2 = m1m2<U1 — U2)2

e quindi (dopo ulteriori conti)

,_ |vi, oppure
Ui+ = mi—mso 4 2mo
m1+m2 mi1+ma

Usando queste soluzioni per v}, otteniamo (dopo alcuni conti)

o vy, Ooppure
Tl + e,

Abbiamo due soluzioni al problema, ma solo una é fisicamente valida.
La prima soluzione (ossia v] = v, e v), = v,) non ¢ fisicamente valida
perché presuppone che i due carrelli si siano attraversati. Quindi deve
succedere la seconda situazione:

mi — My 2meo 2mq me — My

’Ui = v + Uy € Ué = —V + —— 5.
mi + Mma mi + mo mi + mo mi + ma

§3.19. Altri esercizi.
(1) Biliardo
(2) Carrelli si scontrano elasticamente a valle: quanto risalgono?
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APPENDICE A. CALCOLO SIMBOLICO

§1.1. Fa qualcosa:
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§1.2. Espandi. Espandere un’espressione algebrica significa scriverla
come somma di termini semplici. Per esempio, (x + 2)(z + 1) + 23y si
espande (e semplifica) a 22 + 3xy + 3z + 2. I termini semplici qui sono
22, 3y, 3z, e 2.

(1) (x+2)(x+ 1) + 23y

2) (a+0b)?
2z(a — 2b)*
(a+b)(a—Db)
z(a+b) —yla—b) + 2zy

§1.3. Esplicita. Se abbiamo una equazione possiamo cercare di espli-
citare una variabile. Per esempio, se abbiamo ’equazione

(15) —dz +a*(z+2)=d® — 1,
possiamo esplicitare x:

1+ a?

(16) T=——

Questo passaggio non € immediato, ma servono alcuni passaggi inter-
medi che ti invito a fare su un foglio.

E importante imparare a fare questi passaggi in modo naturale. E an-
che importante imparare le sottigliezze di questi passaggi, perché ogni
passaggio necessita di alcune condizioni. Per esempio, nell’espressione
che ho scritto per z, ¢’¢ a? — 4 al denominatore. Siccome non abbiamo
condizioni sui valori di a, dobbiamo prendere in considerazione il caso
in cui @ ha un valore per il quale a®> — 4 = 0. Per esempio, a potrebbe
assumere i valori 2 o —2. In questo caso, ’espressione che ho scritto
per x non ha piu senso: stiamo dividendo per zero. Come & possibile
che da una espressione senza condizioni come ’equazione (15) siamo
arrivati a una equazione con condizioni come in (16)? La risposta é:
¢’é stato almeno un passaggio in cui abbiamo usato quella condizioni.

Vediamo quindi come si passa da (15) a (16). A lato do una giu-
stificazione del passaggio. La sigla “PADC” sta per “proprieta associa-
tiva, distributiva, commutativa” e si riferisce alle proprieta elementari
di somma e moltiplicazioni. La sigla “e.l.” sta per “entrambi i lati
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dell’equazione”
—dx+d*(z+2) =da*—1
S(—4+a®)r +2a®> =a® -1 (per PADC)
S(—4+ad)r=a*—1—2d> (aggiungo —2a’ a e.l.)
&(—4+a*)v=—(1+a*)  (per PADC)
{x = —Clbjfi divido per a®> — 4 a e.l., SE diverso da zero,
l1+a?=0 SEa*—-4=0.

Questo ¢ quindi il vero risultato. Nel caso in cui a®> — 4 = 0, allora
I1+a*=1+a>+4—4)=1+(a*—4)+4=5equindil +a*=0¢
falso. In altre parole, se a*> — 4 = 0, allora (15) ¢ falsa per qualunque
valore di . In conclusione

1+ a?
—Adr+ad(zr+2)=d"-1 & a2—47é0,ea::—2+ 1
a p—
In ogni passaggio, le operazioni che possiamo compiere sono:
Operazione Condizioni
PADC nessuna
Aggiungere qlcs a e.l. nessuna

Moltiplicare qlcs a e.l. | qlcs deve essere non zero
Dividere per qlcs a e.l. | glcs deve essere non zero

Esercizi:

(1) Esplicita  in x +2 =0
(2) Esplicita x in x +2 =a
(3) Esplicita x in x +a =25
(4) Esplicitaainx+a=10
()

3
4
5) Esplicita z in (x 4+ 2)b = ¢
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