INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS – EXERCISES FOR WEEK 9 –

1. Shwartz class of functions

For $f : \mathbb{R}^n \to \mathbb{C}$ smooth, define

(1) $p_{\alpha,N}(f) = \sup_{x \in \mathbb{R}^n} (1+|x|)^N |\mathbf{D}^{\alpha} f(x)|.$

The space \mathscr{S} is the space of $f \in C^{\infty}(\mathbb{R}^n)$ with $p_{\alpha,N}(f) < \infty$ for all α, N .

Exercise 1.1. Show that $\mathscr{S} \subset L^p$ for all $p \in [1, +\infty]$. *Hint:* Use (1) for N large enough.

Exercise 1.2. Show that $f_j \to f_\infty$ in \mathscr{S} if and only if $x^{\alpha} D^{\beta} f_j \to x^{\alpha} D^{\beta} f_\infty$ in L^{∞} , for every $\alpha, \beta \in \mathbb{N}^n$.

Exercise 1.3. Show that, if $f_j \to f_\infty$ in \mathscr{S} , then, for every $\alpha \in \mathbb{N}^n$, $D^{\alpha}f_j \to D^{\alpha}f_\infty$ in $L^p(\mathbb{R}^n)$, for all $p \in [1, +\infty]$.

Hint: Take first p = 1 and $\alpha = 0$. Up to substituting f_j with $f_j - f_\infty$, we can also assume $f_\infty = 0$. So we need to show that, if $f_j \to 0$ in \mathscr{S} , then $f_j \to 0$ in $L^1(\mathbb{R}^n)$. The convergence $f_j \to 0$ in \mathscr{S} implies that, for every N > 0 and every $\epsilon > 0$, there is $J \in \mathbb{N}$ such that $|f_j(x)|(1+|x|)^N < \epsilon$ for all $x \in \mathbb{R}^n$ and all j > J.

Exercise 1.4. Define $g_{\epsilon} : \mathbb{R}^n \to [0, +\infty)$ by

(2)
$$g_{\epsilon}(z) = \frac{1}{\epsilon^n} e^{-\pi |z|^2/\epsilon^2} = \frac{1}{\epsilon^n} \exp(-\pi |z|^2/\epsilon^2).$$

Show that, if $f \in \mathscr{S}$, then $f * g_{\epsilon} \to f$ in \mathscr{S} as $\epsilon \to 0$.

Hint: Go back to the proof of the first statement in Proposition ??. The now g_{ϵ} does not have compact support, but $\int_{\mathbb{R}^n \setminus B(0,1)} g_{\epsilon}(x) dx$ is arbitrarily small as $\epsilon \to 0$.

Exercise 1.5. Show that \mathscr{S} is dense in $L^1(\mathbb{R}^n)$

Hint: Given $f \in L^1(\mathbb{R}^n)$, consider $f_j(x) = \psi(x/j)f * \rho_{1/j}(x)$, where $\{\rho_\epsilon\}_{\epsilon>0}$ is a family of mollifiers, and $\psi \in C_c^{\infty}(\mathbb{R}^n)$ is a function valued in [0, 1] with $B(0, 1) \subset \{\psi = 1\}$. You then need to show that $f_j \in \mathscr{S}$ and that $f_j \to f$ in $L^1(\mathbb{R}^n)$. Use the fact that, for every $\epsilon > 0$ there exists R > 0 such that $\int_{\mathbb{R}^n \setminus B(0,R)} |f(x)| \, dx < \epsilon$ (this is a direct consequence of integrability).

Exercise 1.6. (Maybe this already appeared before). Show that \mathscr{D} is dense in $L^p(\mathbb{R}^n)$ for all $p \in [1, \infty)$. Deduce that \mathscr{S} is dense in $L^p(\mathbb{R}^n)$ for all $p \in [1, \infty)$.

But then, show also that, if $f_j \to f_\infty$ in \mathscr{D} or \mathscr{S} , then $f_j \to f_\infty$ in $L^p(\mathbb{R}^n)$ for all $p \in [1, \infty)$.

April 19, 2025. Last git commit: ab88d7c in branch: master

2. Fourier transform

Recall that, for $u \in L^1(\mathbb{R}^n)$ and $\xi \in \mathbb{R}^n$,

(3)
$$\hat{u}(\xi) = \mathscr{F}(u)(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i x \cdot \xi} u(x) \, \mathrm{d}x.$$

Exercise 2.1. Prove the following properties:

(1) If
$$u \in L^1(\mathbb{R}^n)$$
, $a \in \mathbb{R}^n$, and $u_a(x) = u(x+a)$ then $\mathscr{F}(u_a)(\xi) = e^{2\pi i a \cdot \xi} \mathscr{F}(u)(\xi)$.
(2) If $u \in L^1(\mathbb{R}^n)$, $T : \mathbb{R}^n \to \mathbb{R}^n$ is linear and invertible, then

(4)
$$\mathscr{F}(u \circ T)(\xi) = |\det T|^{-1} \mathscr{F}(u)((T^{-1})^*\xi).$$

(3) If T is a rotation of \mathbb{R}^n , then $\mathscr{F}(u \circ T) = \mathscr{F}(u) \circ T$. Hint: See [2, Proposition (0.21)]

Exercise 2.2. Compute $\mathscr{F}(\bar{u})$ in terms of $\mathscr{F}(u)$. (Here $\bar{\cdot}$ denotes the complex conjugate, that is, for $x, y \in \mathbb{R}, \overline{x + iy} = x - iy$.)

Exercise 2.3. Compute $\mathscr{F}(u(-x))$ in terms of $\mathscr{F}(u)$.

Exercise 2.4. Fix
$$f \in \mathscr{S}$$
 and define $g(x) = \overline{f(-x)}$. Show that $\hat{g}(\xi) = \overline{\hat{f}(\xi)}$.

$$u(x) = Ae^{-a|x|^2},$$

for every $A \in \mathbb{C}$ and a > 0. Hint:

(5)

(6)

(8)

(9)

$$\mathscr{F}(Ae^{-a|x|^2}) = A\left(\frac{\pi}{a}\right)^{n/2} e^{-\frac{\pi^2}{a}|x|^2}.$$

 \Diamond

 \Diamond

 \Diamond

Recall from Exercise ??, that the convolution of two functions $f, g \in L^1(\mathbb{R}^n)$ is a well defined function $f * g \in L^1(\mathbb{R}^n)$.

Exercise 2.6. Show that, for every $f, g \in L^1(\mathbb{R}^n)$,

(7)
$$\mathscr{F}(f * g) = \mathscr{F}(f) \cdot \mathscr{F}(g).$$

Or, otherwise stated,
$$(f * g)^{\wedge} = \hat{f}\hat{g}$$
.

Exercise 2.7. Show that, for every $f, g \in L^1(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} f(x)\hat{g}(x) \,\mathrm{d}x = \int_{\mathbb{R}^n} \hat{f}(\xi)g(\xi) \,\mathrm{d}\xi.$$

Hint: Notice that, by (??), $f\hat{g} \in L^1(\mathbb{R}^n)$ and $\hat{f}, g \in L^1(\mathbb{R}^n)$. So, unpack the definition of \hat{g} and use Fubini.

Exercise 2.8. Define $\mathcal{I}: \mathscr{S} \to \mathscr{S}, \mathcal{I}(f)(x) = f(-x)$. Show that

$$\mathscr{F}^2 = \mathcal{I} \quad \text{and} \quad \mathscr{F}^4 = \mathrm{Id}_{\mathscr{S}}.$$

Hint: Forget about the Fourier transform, but only use $\mathscr{FIF} = 1$.

3. Tempered distributions and their Fourier transform

Exercise 3.1. Show that

(10)

 $\mathscr{D}' \supset \mathscr{L}' \supset \mathscr{E}'.$

 \diamond

 \Diamond

 \Diamond

 \Diamond

Exercise 3.2. Show the following properties of tempered distributions:

- (1) If $u \in \mathscr{S}'$ and $\alpha \in \mathbb{N}^n$, then $D^{\alpha}u \in \mathscr{S}'$.
- (2) If $u \in \mathscr{S}'$ and $f \in C^{\infty}(\mathbb{R}^n)$ is such that, for all $\alpha \in \mathbb{N}^n$, $D^{\alpha}f$ grows at most polynomially at infinity, then $fu \in \mathscr{S}'$.
- (3) If $u \in \mathscr{S}'$ and $f \in \mathscr{S}$, then $u * f \in \mathscr{S}$.

Exercise 3.3. Show that, if $h : \mathbb{R}^n \to \mathbb{C}$ is a measurable function that grows at most polynomially, then $f \mapsto \int_{\mathbb{R}^n} h(x) f(x) \, dx$ defines a tempered distribution.

We define the Fourier transform of a tempered distribution $u \in \mathscr{S}'$ as $\hat{u} = \mathscr{F}(u)$, where

(11)
$$\hat{u}[f] = u[\hat{f}], \quad \forall f \in \mathscr{S}$$

Exercise 3.4. Show the following properties of the Fourier transform of tempered distributions:

- (1) If $u \in \mathscr{S}'$, then $\hat{u} \in \mathscr{S}'$.
- (2) If $u \in \mathscr{S}'$ is actually in \mathscr{S} , i.e., $u[f] = \int_{\mathbb{R}^n} u(x)f(x) \, \mathrm{d}x$ for all $f \in \mathscr{S}$, then \hat{u} as distribution is equal to \hat{u} as function.
- (3) $\mathscr{F}: \mathscr{S}' \to \mathscr{S}'$ is a continuous, invertible linear operator, with inverse $\mathscr{F}^{-1}u[f] = u[\mathscr{F}^{-1}(f)].$
- (4) If $u \in \mathscr{S}'$ and $f \in \mathscr{S}$, then

(12)

$$\mathscr{F}(u*f) = \hat{u}\hat{f}.$$

(5) If $f \in \mathscr{S}'$, then $\hat{f} \in \mathscr{S}'$ and, for every $\alpha \in \mathbb{N}^n$,

- (13) $\mathscr{F}(\mathrm{D}^{\alpha}f) = (2\pi i\xi)^{\alpha} \mathscr{F}(f),$
- (14) $\mathscr{F}((-2\pi i x)^{\alpha} f) = \mathrm{D}^{\alpha} \mathscr{F}(f).$

Exercise 3.5. Compute $\mathscr{F}(\delta_0)$.

Exercise 3.6. Compute $\mathscr{F}(1)$.

Exercise 3.7. Compute $\mathscr{F}(p(x))$, where $p(x) = \sum_{|\alpha| \leq N} c_{\alpha} x^{\alpha}$ is a polynomial of degree N.

Remark 3.1. It is a fact that, if \hat{u} has compact support, then u is analytic, see [3, Thm 7.1.14] It is a recurrent theme that regularity of u is proportional to integrability of \hat{u} (and viceversa, of course). There are two sorts of "equilibrium points" of this behavior: \mathscr{S} and $L^2(\mathbb{R}^n)$.

4. Applications to PDE

Exercise 4.1. Assuming $g, h \in \mathscr{S}$, write u(t) from the formula

(15)
$$\hat{u}(t) = \cos(2\pi i |\xi| t) \hat{g} + \frac{\sin(2\pi i |\xi| t)}{2\pi i |\xi|} \hat{h}.$$

Exercise 4.2 (Bessel Potentials). Using the Fourier transform, give a representation to the solutions of

(16) $- \bigtriangleup u + u = f.$ *Hint:* See [1, §4.3, p.191].

Exercise 4.3 (Eigenfunctions of the Laplacian). Using the Fourier transform, give a representation to the solutions of

(17)
$$-\bigtriangleup u = \lambda u,$$

for $\lambda \in \mathbb{C}$. For which λ there exists a solution?

References

- L. C. Evans. Partial differential equations. Second. Vol. 19. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010, pp. xxii+749.
- [2] G. B. Folland. Introduction to partial differential equations. Second. Princeton University Press, Princeton, NJ, 1995, pp. xii+324.
 - L. Hörmander. The analysis of linear partial differential operators. I. Vol. 256. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Distribution theory and Fourier analysis. Springer-Verlag, Berlin, 1983, pp. ix+391.

 \diamond

 \Diamond