INTRODUCTION TO
PARTIAL DIFFERENTIAL EQUATIONS
— EXERCISES FOR WEEK 9 —

1. SHWARTZ CLASS OF FUNCTIONS
For f : R™ — C smooth, define

Pan(f) = sup (1+[2)V|D*f(z)].
ERSING

(1)
The space . is the space of f € C*(R") with po n(f) < oo for all o, N.
Exercise 1.1. Show that . C L? for all p € [1, +00].

Hint: Use (1) for N large enough. O
Exercise 1.2. Show that f; — f. in ./ if and only if ;U“D'ij — z*DP f.. in L, for
every «, 3 € N™. O

Exercise 1.3. Show that, if f; = fo in ., then, for every a € N*, D*f; — D f
in LP(R™), for all p € [1, +o0].

Hint: Take first p =1 and o = 0. Up to substituting f; with f; — fo, we can also
assume foo = 0. So we need to show that, if f; — 0 in ., then f; — 0 in L*(R™).
The convergence f; — 0 in . implies that, for every N > 0 and every € > 0, there is
J € N such that |f;(z)|(1 + |z])Y < € for all z € R™ and all j > J. O

Exercise 1.4. Define g. : R — [0, 4+00) by
1
L mapre _

(2) ge(2) = = éeXp(—w|z\2/e2).

Show that, if f € ., then f*g. — f in ¥ as e — 0.
Hint: Go back to the proof of the first statement in Proposition ??. The now g,
does not have compact support, but fRn\ B(0,1) ge(z) dz is arbitrarily small as e — 0. ¢

Exercise 1.5. Show that .# is dense in L!(R").

Hint: Given f € L'(R"), consider f;(z) = ¥ (x/j)f * p1j(x), where {pc}eso is a
family of mollifiers, and ¢ € C°(R™) is a function valued in [0, 1] with B(0,1) C {¢ =
1}. You then need to show that f; € .% and that f; — f in L'(R"). Use the fact that,
for every € > 0 there exists R > 0 such that fR"\B(O,R) |f(z)|dx < e (this is a direct

consequence of integrability). O
Exercise 1.6. (Maybe this already appeared before). Show that & is dense in LP(R™)
for all p € [1,00). Deduce that . is dense in LP(R™) for all p € [1,00).

But then, show also that, if f; = fs in Z or .7, then f; — fs in LP(R") for all
p € [1,00). O
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2. FOURIER TRANSFORM

Recall that, for u € L'(R™) and £ € R,

3) aE) = F(u)(€) = /

Exercise 2.1. Prove the following properties:
(1) fu € LY(R"), a € R", and uy(x) = u(x +a) then F(u,)(€) = 2™4EF (u)(€).
(2) If u € LY(R™), T : R™ — R™ is linear and invertible, then

e 2wty (z) da.

n

(4) F(uoT)(§) = |det T|~"F (uw)(T71)"¢).

(3) If T is a rotation of R™, then F(uoT) =% (u)oT.
Hint: See [2, Proposition (0.21)] ¢
Exercise 2.2. Compute .7 () in terms of . (u). (Here - denotes the complex conju-
gate, that is, for z,y € R, x + iy = = — iy.) O
Exercise 2.3. Compute % (u(—=x)) in terms of .7 (u). O
Exercise 2.4. Fix f € .7 and define g(z) = f(—z). Show that §(¢) = f(€). O

Exercise 2.5. Compute the Fourier transform of the function

(5) u(z) = A=l
for every A € C and a > 0.
Hint:
n/2 .
(6) F(Aeml) = 4 (T) e~ Il
a

O

Recall from Exercise ??, that the convolution of two functions f,g € L'(R") is a
well defined function f * g € L'(R").

Exercise 2.6. Show that, for every f,g € L'(R"),

(7) F(fxg)=F(f) F(9)

Or, otherwise stated, (f * g)" = f§. O
Exercise 2.7. Show that, for every f,g € L*(R"),

(8) f@)g@)de= [ f(©)g(&)de.
R R™

Hint: Notice that, by (??), f¢ € L'(R") and f,g € L'(R™). So, unpack the

definition of § and use Fubini. O
Exercise 2.8. Define Z: ¥ — ., Z(f)(z) = f(—x). Show that
(9) F =T and F'=1Idgy.

Hint: Forget about the Fourier transform, but only use #Z.% = 1. O



3. TEMPERED DISTRIBUTIONS AND THEIR FOURIER TRANSFORM
Exercise 3.1. Show that

(10) 9'>.9" > &

Exercise 3.2. Show the following properties of tempered distributions:

(1) f u € & and o € N”, then D%u € ..

(2) fu e & and f € C°(R") is such that, for all & € N, D*f grows at most
polynomially at infinity, then fu € &’.

(3) fue . and f €., then ux f € ..

¢

Exercise 3.3. Show that, if A : R — C is a measurable function that grows at most
polynomially, then f — [, h(z)f(x)dz defines a tempered distribution. O

We define the Fourier transform of a tempered distribution v € %/ as 4 = % (u),
where

(11) alf] = ul[f], VfeS.
Exercise 3.4. Show the following properties of the Fourier transform of tempered
distributions:
(1) fue ., then 4 € .
(2) If w € & is actually in .7, ie., u[f] = [, u(z)f(z)dz for all f € ., then @
as distribution is equal to @ as function.
(3) .F .. — &' is a continuous, invertible linear operator, with inverse .# ~u/[f]

ulZH(f)].
Ifue.” and f € ., then

F(uxf)=1af.
If f €.7, then f € .7 and, for every o € N,

(13) F(Df) = (2mig)*F (f),
(14) F((—2miz)* f) = DYZ(f).

0
Exercise 3.5. Compute .7 (dp). O
Exercise 3.6. Compute .7 (1). o

Exercise 3.7. Compute .7 (p(z)), where p(z) = >, < Ca® is a polynomial of degree
N. - o

Remark 3.1. It is a fact that, if & has compact support, then u is analytic, see (3,
Thm 7.1.14] Tt is a recurrent theme that regularity of u is proportional to integrability
of 4 (and viceversa, of course). There are two sorts of “equilibrium points” of this
behavior: . and L?(R™).

4. AprpLICATIONS TO PDE

Exercise 4.1. Assuming g, h € .7, write u(t) from the formula
sin(2milE|t) »

(15) 2mile|

() = cos(2mi|&|t)g +

O

Exercise 4.2 (Bessel Potentials). Using the Fourier transform, give a representation
to the solutions of

(16)
Hint: See [1, §4.3, p.191].

—Au+u=f
O

Exercise 4.3 (Eigenfunctions of the Laplacian). Using the Fourier transform, give a
representation to the solutions of

(17) — Au = \u,
for A € C. For which )\ there exists a solution? O
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