INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS – EXERCISES FOR WEEK 8 –

1. DISTRIBUTION WITH COMPACT SUPPORT

Exercise 1.1. Check whether the topology on $\mathscr{E}(\Omega)$ is the the initial topology induced by the maps $C^{\infty}(\Omega) \hookrightarrow C^{m}(\Omega)$.

Hint: I actually don't know if this is true. So, please send me an email with the result, if you don't mind. \Diamond

Exercise 1.2. Show that $\mathscr{D}(\Omega)$ is dense in $\mathscr{E}(\Omega)$.

Exercise 1.3. Find a sequence $\phi_i \in \mathscr{D}(\Omega)$ that converges to some f in $\mathscr{E}(\Omega)$ but it does not converge in $\mathscr{D}(\Omega)$.

Just as a note: there is a notion of "Cauchy sequence" for topological vector spaces (see Rudin's book). With such a notions available, one could check that $\mathscr{D}(\Omega)$ is complete in its own topology, but that its completion in the topology of $\mathscr{E}(\Omega)$ is $\mathscr{E}(\Omega)$. This should clarify the situation. \Diamond

Exercise 1.4. In the proof of

(1)
$$\mathscr{E}'(\Omega) = \{A \in \mathscr{D}'(\Omega) \text{ with compact support}\}.$$

we have defined the extension of $A \in \mathscr{D}'(\Omega)$ to $\mathscr{E}(\Omega)$ as $A_{\psi}[f] = A[\psi f]$, where $\psi \in$ $C^{\infty}_{c}(\Omega)$ such that spt $A \subset \operatorname{interior}\{\psi = 1\}$. It looks like this extension depends on the choice of ψ . Does it? \Diamond

Exercise 1.5. Show that all distributions in $\mathscr{E}'(\Omega)$ have finite order. More precisely, if $u \in \mathscr{E}'(\Omega)$, then there are $N \in \mathbb{N}$ and $C \in \mathbb{R}$ such that, for every $f \in \mathscr{E}(\Omega)$,

(2)
$$|u[f]| \le C ||f||_{C^N(\operatorname{spt}(u))}.$$

2. Convolution

Exercise 2.1. Prove the following proposition: If $u \in \mathscr{E}'$ and $f \in \mathscr{E}$, then $u * f \in \mathscr{E}$. Moreover

(3) $\operatorname{spt}(u * f) \subset \operatorname{spt}(u) + \operatorname{spt}(f)$, and

(4)
$$D^{\alpha}(u * f) = u * (D^{\alpha}f) = (D^{\alpha}u) * f, \quad \forall \alpha \in \mathbb{N}^{n}$$

In particular, if $f \in \mathscr{D}$, then $u * f \in \mathscr{D}$.

Exercise 2.2. Prove the following three statements: (1) If $\phi_i \to \phi_\infty$ in \mathscr{D} and $u \in \mathscr{D}'$, then $u * \phi_i \to u * \phi_\infty$ in \mathscr{E} .

- (2) If $\phi_i \to \phi_\infty$ in \mathscr{E} and $u \in \mathscr{E}'$, then $u * \phi_i \to u * \phi_\infty$ in \mathscr{E} .
- (3) If $\phi_i \to \phi_\infty$ in \mathscr{D} and $u \in \mathscr{E}'$, then $u * \phi_i \to u * \phi_\infty$ in \mathscr{D} .

Hint: I have written two out of three of these proofs in my notes.

Exercise 2.3. Show the following properties of convolution of distributions:

- (1) If $u_1, u_2 \in \mathscr{D}'$, one of which has compact support, then $u_1 * u_2 \in \mathscr{D}'$ is well defined.
- (2) If $u_1, u_2 \in \mathscr{D}'$, one of which has compact support, then $u_1 * u_2 = u_2 * u_1$.
- (3) If $u_1, u_2 \in \mathscr{D}'$, one of which has compact support, then $\operatorname{spt}(u_1 * u_2) \subset \operatorname{spt}(u_1) +$ $\operatorname{spt}(u_2).$
- (4) If If $u_1, u_2, u_3 \in \mathscr{D}'$, two of which have compact support, then $(u_1 * u_2) * u_3 =$ $u_1 * (u_2 * u_3).$
- (5) If $u_1, u_2 \in \mathscr{D}'$, one of which has compact support, and $\alpha \in \mathbb{N}^n$, then $D^{\alpha}(u * v) =$ $(\mathbf{D}^{\alpha}u) * v = u * (\mathbf{D}^{\alpha}v).$
- (6) If $u_1, u_2 \in \mathscr{D}'$, one of which has compact support, and one of which is smooth, then $u_1 * u_2 \in \mathscr{E}$.

$$\Diamond$$

 \Diamond

 \Diamond

Exercise 2.4. Show that
$$\delta_0 * u = u$$
 for every $u \in \mathscr{D}'$. What is $\delta_v * u$?

3. Singular support

Exercise 3.1. Show that, if $u \in \mathscr{D}'(\Omega)$, the restriction of u to $\Omega \setminus \operatorname{singSpt}(u)$ is a smooth function. \Diamond

Exercise 3.2. Show that $\operatorname{singSpt}(u) \subset \operatorname{spt}(u)$.

Exercise 3.3. Show that, if $E \in \mathscr{D}'$ is such that $\operatorname{singSpt}(E) \subset \{0\}$, then $\operatorname{singSpt}(E *$ $u \subset \operatorname{singSpt}(u)$ for all u that can be convoluted with E. \Diamond

4. FUNDAMENTAL SOLUTIONS

2,

3.

Exercise 4.1. Show that the function $\Phi : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$,

5)
$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log(|x|) & \text{if } n = \\ \frac{1}{n(n-2)\omega_n} \frac{1}{|x|^{n-2}} & \text{if } n \ge \end{cases}$$

where ω_n is the volume of the unit ball in \mathbb{R}^n , is a fundamental solution of $P = -\Delta$.

Exercise 4.2. Show that the function $\Phi: \mathbb{R}^n \times \mathbb{R} \setminus \{(0,0)\} \to [0,+\infty)$ defined by (6)

$$\Phi(x,t) = \begin{cases} \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right) & \text{for } x \in \mathbb{R}^n \text{ and } t > 0, \\ 0 & \text{otherwise, i.e., } (x,t) \in (\mathbb{R}^n \times (-\infty,0]) \setminus \{(0,0)\}, \end{cases}$$

is a fundamental solution of $P = \partial_t - \Delta$.

is a fundamental solution of $P = \partial_t - \Delta$.

Exercise 4.3. Find a fundamental solution for the wave operator $P = \Box = \partial_t^2 - \Delta$ in dimension 1, 2 and 3.

 \Diamond

 \wedge

April 13, 2025. Last git commit: d6fdb14 in branch: master