Introduction to Partial Differential Equations - Exercises for Week 6 -

Our main reference is Chapter 6 of Rudin's book:

• W. Rudin. Functional analysis. Second. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991, pp. xviii+424

There, you can find even more interesting exercises.

1. Homogeneous wave equation

Exercise 1.1. Recover Kirchhoof's formula from

(1)
$$u(x,t) = \frac{1}{\gamma_n} \left[\left(\frac{\partial}{\partial t} \right) \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{\frac{n-3}{2}} \left(t^{n-2} \int_{\partial B(x,t)} g(y) \, \mathrm{d}S(y) \right) + \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{\frac{n-3}{2}} \left(t^{n-2} \int_{\partial B(x,t)} h(y) \, \mathrm{d}S(y) \right) \right],$$

Exercise 1.2. Recover Poisson's formula from

$$u(x,t) = \frac{1}{\beta_n} \left[\left(\frac{\partial}{\partial t} \right) \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{\frac{n-2}{2}} \left(t^n \oint_{B(x,t)} \frac{g(y)}{(t^2 - |y - x|^2)^{1/2}} \, \mathrm{d}S(y) \right) + \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{\frac{n-2}{2}} \left(t^n \oint_{B(x,t)} \frac{h(y)}{(t^2 - |y - x|^2)^{1/2}} \, \mathrm{d}S(y) \right) \right],$$

2. Nonhomogeneous wave equation

Exercise 2.1. Prove the following Theorem 2.1.

Theorem 2.1 (Nonhomogeneous equation with null initial data). Let $n \geq 2$ and $f \in C^{\left\lfloor \frac{n}{2} \right\rfloor + 1}(\mathbb{R}^n \times [0, +\infty))$. For every s > 0, let $u_s : \mathbb{R}^n \times [s, +\infty) \to \mathbb{C}$ be the solution in $C^2(\mathbb{R}^n \times [0, +\infty))$ to

(3)
$$\begin{cases} \Box u = (\partial_t^2 - \triangle)u = 0 & \text{in } \mathbb{R}^n \times (s, +\infty), \\ u = 0, \ \partial_t u = f(\cdot, s) & \text{on } \mathbb{R}^n \times \{s\}. \end{cases}$$

Define $u: \mathbb{R}^n \times [0, +\infty) \to \mathbb{C}$ by

(4)
$$u(x,t) = \int_0^t u_s(x,t) \, \mathrm{d}s.$$

March 26, 2025. Last git commit: 08d061a in branch: master

Then $u \in C^2(\mathbb{R}^n \times [0, +\infty))$ and u is a solution to

(5)
$$\begin{cases} \Box u = (\partial_t^2 - \triangle)u = f & in \mathbb{R}^n \times (0, +\infty), \\ u = 0, \ \partial_t u = 0 & on \mathbb{R}^n \times \{0\}. \end{cases}$$

Exercise 2.2. Write explicitly u from Theorem 2.1 for n=2 and n=3.

Exercise 2.3. Prove the following Theorem 2.2.

Theorem 2.2 (Nonhomogeneous wave equation). Let $n \geq 2$ and $m = \lfloor \frac{n}{2} \rfloor + 1$. Let $f \in C^m(\mathbb{R}^n \times [0, +\infty))$, Let $g \in C^{m+1}(\mathbb{R}^n)$, and $h \in C^m(\mathbb{R}^n)$.

 \Diamond

 \Diamond

 \Diamond

Let u_0 be the function given by Theorem ?? and ??, and u_1 the function given by Theorem 2.1. Set $u = u_0 + u_1$. Then $u \in C^2(\mathbb{R}^n \times [0, +\infty))$ and u is a solution to

(6)
$$\begin{cases} \Box u = (\partial_t^2 - \triangle)u = f & in \mathbb{R}^n \times (0, +\infty), \\ u = g, \ \partial_t u = h & on \mathbb{R}^n \times \{0\}. \end{cases}$$

3. Test functions

Exercise 3.1. We can see $\mathscr{D}(\Omega)$ as a subspace of $\mathscr{D}(\mathbb{R}^n)$, but not as a closed subspace. Why?

Exercise 3.2. Show that the following three topologies on $\mathcal{D}(\Omega)$ are the same:

- (1) The first way to construct the topology of $\mathscr{D}(\Omega)$ is defining the collection β of all convex balanced sets $W \subset \mathscr{D}(\Omega)$ such that $\mathscr{D}(K) \cap W$ is open $\mathscr{D}(K)$ for all $K \subset \Omega$ compact. A a set W is balanced if $\lambda W \subset W$ for all $\lambda \in \mathbb{C}$ with $|\lambda| \leq 1$. The collection β induces a topology τ make of unions of elements of $\{x + W : x \in \mathscr{D}(K), w \in \beta\}$. Then τ makes $\mathscr{D}(\Omega)$ into a locally convex topological vector space.
- (2) We can endow $C_c^{\infty}(K) = \bigcap_{m \in \mathbb{N}} C_c^m(K)$ with the initial topology induced by the functions $C_c^{\infty}(K) \hookrightarrow C_c^m(K)$, and then $\mathscr{D}(\Omega) = \bigcup_{K \in \Omega} C_c^{\infty}(K)$ with the final topology induced by the functions $C_c^{\infty}(K) \hookrightarrow C_c^{\infty}(\Omega)$.
- (3) We can endow $C_c^m(\Omega) = \bigcup_{K \in \Omega} C_c^m(K)$ with the final topology induced by the functions $C_c^m(K) \hookrightarrow C_c^m(\Omega)$, and then $\mathscr{D}(\Omega) = \bigcap_{m \in \mathbb{N}} C_c^m(\Omega)$ with the initial topology induced by the functions $C_c^\infty(\Omega) \hookrightarrow C_c^m(\Omega)$.

If needed, here are the definitions of initial and final topology:

Definition 3.1 (Initial, or projective, topology). Given a set Y and a family of topological spaces $\{Z_i\}_{i\in I}$ and functions $f_i:Y\to Z_i$. The *initial topology* or *projective topology* induced by the family of functions f_i is the coarsest (i.e., smallest) topology in Y that makes all functions f_i continuous.

Definition 3.2 (Final, or inductive, topology). Given a set Y and a family of topological spaces $\{X_i\}_{i\in I}$ and functions $f_i: X_i \to Y$. The final topology or inductive topology induced by the family of functions f_i is the finest (i.e., largest) topology in Y that makes all functions f_i continuous.

 \Diamond

Exercise 3.3. Prove the following proposition:

Proposition 3.3. Let Y be a locally convex space and $L : \mathcal{D}(\Omega) \to Y$ linear. Then the following are equivalent:

- (1) L is continuous;
- (2) if $\phi_j \to 0$ in $\mathcal{D}(\Omega)$ then $L\phi_j \to 0$ in Y;
- (3) the restrictions of L to every $C_c^{\infty}(K) \subset \mathcal{D}(\Omega)$, for $K \in \Omega$, are continuous.

 \Diamond

4. Distributions

Exercise 4.1. Find a sequence $f_j \in L^1_{loc}(\mathbb{R})$ such that $||f_j||_{L^1([0,1])} = 1$ but $A_{f_j} \to 0$ in $\mathscr{D}'(\mathbb{R})$.

Exercise 4.2. Show that $f_j \to 0$ weakly* in $L^1_{loc}(\mathbb{R}^n)$, if and only if $A_{f_j} \to 0$ in $\mathscr{D}'(\mathbb{R}^n)$. The weak* convergence is $\int_{\mathbb{R}} f_j g \, \mathrm{d}x \to 0$ for all $g \in L^{\infty}(\mathbb{R}^n)$ with compact support.

Exercise 4.3. Let $\{u_k\}_{k\in\mathbb{N}}\subset C^{\infty}(\Omega)$ be a sequence of harmonic functions and suppose that $u_k\to A$ in $\mathscr{D}'(\Omega)$. Show that A is a harmonic function.

Exercise 4.4. Show that $\mathcal{D}(\Omega)$ is dense in $(C_0(\Omega), \|\cdot\|_{L^{\infty}})$, where

(7) $C_0(\Omega) = \{ f \in C(\Omega) : \text{for every } \epsilon > 0 \text{ the set } \{ |f| \ge \epsilon \} \text{ is compact} \}.$

 \Diamond

References

[1] W. Rudin. Functional analysis. Second. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991, pp. xviii+424.