Introduction to Partial Differential Equations – Exercises for Week 5 –

1. Examples

Exercise 1.1. Compute $\Box u$ for $u(x,t) = \exp((a+bi) \cdot x + \phi t)$, where $a, b \in \mathbb{R}^n$ and $\phi \in \mathbb{R}$.

Exercise 1.2. Show that \Box is invariant under the Lorentz group of transformations. Recall that the Lorentz group is the group of linear automorphisms of the Minkowski space. More explicitly, if M is the $(n + 1) \times (n + 1)$ matrix

(1)
$$M = \begin{pmatrix} \mathrm{Id} & 0\\ 0 & -1 \end{pmatrix},$$

then the Minkowski space is $(\mathbb{R}^n \times \mathbb{R}, M)$ and the Lorentz group is made of matrices $A \in GL(\mathbb{R}^n \times \mathbb{R})$ such that $A^T M A = M$.

Hint. If it seems too hard, try to solve the exercise at leas for n = 1.

Exercise 1.3. For which
$$a, b \in \mathbb{C}$$
 we have $\Box u_{a,b} = 0$?
Hint: $a = b$ or $a = -b$.

Exercise 1.4. For which $a, b \in \mathbb{C}$ we have $u_{a,b}$ 1-periodic (i.e., $u_{a,b}(0) = u_{a,b}(1)$) and (6) $\Box u_{a,b} = 0$? *Hint:* $a, b \in 2\pi i \mathbb{Z}$ with a = b or a = -b.

Exercise 1.5. For every $k \in \mathbb{N}$ and $\ell > 0$, find $u : [0, \ell] \times \mathbb{R} \to \mathbb{R}$ such that

 $(1) \ \Box u = 0,$

(2) $u(0,t) = u(\ell,t) = 0$ for all t, and

(3) there are $0 \le x_0 < x_1 < \cdots < x_k \le \ell$ such that $u(x_j, t) = 0$ for all j and all t. These functions are the Harmonics of the string pinched at the two ends.

Exercise 1.6. Let $c \in \mathbb{C}$. Find $u : \mathbb{R}^n \times \mathbb{R} \to \mathbb{C}$ such that

(2)

2. Uniqueness

 $\Box u = cu.$

Exercise 2.1. Let $\hat{x} \in \mathbb{R}^n$ and R > 0 and define

(3)
$$K(\hat{x}, R) = \{ (x, t) \in \mathbb{R}^n \times [0, R] : |x| \le R \}.$$

Prove the following uniqueness result: if $u_1, u_2 \in C^2(K(\hat{x}, R))$ are such that $\Box u_1 = \Box u_2$ in $K(\hat{x}, R)$ and $u_1 = u_2$ on $K(\hat{x}, R) \cap \mathbb{R}^n \times \{0\}$, then $u_1 = u_2$.

Exercise 2.2. Suppose $u : \mathbb{R}^n \times \mathbb{R} \to \mathbb{C}$ is a solution to

(4)
$$\begin{cases} \Box u = 0 & \text{in } \mathbb{R}^n \times \mathbb{R}; \\ u = g, \ u = h & \text{on } \mathbb{R}^n \times \{0\}. \end{cases}$$

Suppose that the support of g is contained in B(0, r), and suppose you are sitting in x. When do you see something happening to u?

3. WAVE EQUATION IN DIMENSION ONE

Exercise 3.1. Prove Theorem 3.1:

Theorem 3.1 (Solution to $\Box = 0$ for n = 1). Let $g \in C^2(\mathbb{R})$ and $h \in C^1(\mathbb{R})$. Define $u : \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ by D'Alambert's formula

(5)
$$u(x,t) = \frac{1}{2}(g(x+t) + g(x-t)) + \frac{1}{2}\int_{x-t}^{x+t} h(r) \,\mathrm{d}r.$$

Then

(1) $u \in C^2(\mathbb{R} \times \mathbb{R});$ (2) $\partial_t^2 u - \partial_x^2 u = \Box u = 0 \text{ in } \mathbb{R} \times \mathbb{R};$ (3) for every $\hat{x} \in \mathbb{R}, u(\hat{x}, 0) = g(\hat{x}) \text{ and } \partial_t u(\hat{x}, 0) = h(\hat{x}).$

Moreover, u is the only solution to

$$\begin{cases} \Box u = 0 & in \ \mathbb{R} \times (0, +\infty), \\ u = g, \ \partial_t u = h & on \ \mathbb{R} \times \{0\}, \end{cases}$$

Exercise 3.2. Try to solve the nonhomogeneous version of (6), that is,

(7)
$$\begin{cases} \Box u = f & \text{in } \mathbb{R} \times (0, +\infty), \\ u = g, \ \partial_t u = h & \text{on } \mathbb{R} \times \{0\}, \end{cases}$$

for some given f.

Exercise 3.3. Solutions to the wave equation given by D'Alambert's formula (5) are of the form

(8)
$$u(x,t) = F(x+t) + G(x-t),$$

with $F, G \in C^2(\mathbb{R})$. The two functions represent a forward-moving wave and a backward-moving wave. Can you say which is which?

Exercise 3.4. Prove Theorem 3.2:

Theorem 3.2. Let $\mathbb{R}_+ = (0, +\infty)$. Let $g \in C^2(\overline{\mathbb{R}}_+)$ and $h \in C^1(\overline{\mathbb{R}}_+)$ be such that g(0) = h(0) = g''(0) = 0. The function $u : \mathbb{R}_+ \times [0, +\infty) \to \mathbb{C}$,

9)
$$u(x,t) = \begin{cases} \frac{1}{2}(g(x+t) + g(x-t)) + \frac{1}{2}\int_{x-t}^{x+t} h(y) \, \mathrm{d}y & \text{if } 0 \le t \le x, \\ \frac{1}{2}(g(x+t) - g(x-t)) + \frac{1}{2}\int_{-x+t}^{x+t} h(y) \, \mathrm{d}y & \text{if } 0 \le x \le t, \end{cases}$$

March 19, 2025. Last git commit: 06c4a6a in branch: master

 $\mathbf{2}$

belongs to $C^2(\mathbb{R}_+ \times (0, +\infty)) \cap C^0(\overline{\mathbb{R}}_+ \times [0, +\infty))$ and it is THE solution to

(10)
$$\begin{cases} \Box u = 0 & in \ \mathbb{R}_+ \times (0, +\infty), \\ u(x, 0) = g(x), \ \partial_t u(x, 0) = h(x) & \forall x \in \mathbb{R}_+, \\ u(0, t) = 0 & \forall t > 0. \end{cases}$$

Exercise 3.5. For $F, G \in C^2(\mathbb{R})$, define $\tilde{u}(x,t) = F(x+t) + G(x-t)$. Then we know that $\Box \tilde{u}$, see Exercise 3.3. For which F and G we have $\tilde{u}(0,t) = 0$ for all t? Solve (10) finding the correct F and G.

Exercise 3.6. Solve the string problem

(11)
$$\begin{cases} \Box u = 0 & \text{in } [0,1] \times (0,+\infty), \\ u(x,0) = g(x), \ \partial_t u(x,0) = h(x) & \forall x \in [0,1], \\ u(0,t) = u(1,t) = 0 & \forall t > 0. \end{cases}$$

You need to find some conditions on g and h to make u of class C^2 : it is part of the exercise.

Next, for every $n \in \mathbb{N}$, find $u_n \in C^2([0,1] \times \mathbb{R})$ such that $\Box u_n = 0$ and $u_n(k/n, t) = 0$ for all $k \in \{1, \ldots, n\}$. These functions u_n are called *harmonics* of the string.

4. WAVE EQUATION IN DIMENSION THREE

Exercise 4.1. Prove Theorem 4.1:

Theorem 4.1 (Kirchhoff's formula). Let $u \in C^2(\mathbb{R}^3 \times [0, +\infty))$ be such that $\Box u = 0$ in $\mathbb{R}^3 \times (0, +\infty)$. Then, for every $s \ge 0$ and every t > 0,

(12)
$$u(x,s+t) = \oint_{\partial B(x,t)} \left(u(y,s) + \nabla_y u(y,s) \cdot (y-x) + t \partial_s u(y,s) \right) \, \mathrm{d}S(y) dS(y) dS(y)$$

Vice-versa, let $g \in C^2(\mathbb{R}^3)$ and $h \in C^1(\mathbb{R}^2)$, and define

(13)
$$u(x,t) = \int_{\partial B(x,t)} \left(g(y) + \nabla_y g(y) \cdot (y-x) + th(y)\right) \, \mathrm{d}S(y).$$

Then $u \in C^2(\mathbb{R}^3 \times [0, +\infty))$ and u is a solution to

(14)
$$\begin{cases} \Box u = (\partial_t^2 - \Delta)u = 0 & \text{ in } \mathbb{R}^3 \times (0, +\infty), \\ u = g, \ \partial_t u = h & \text{ on } \mathbb{R}^3 \times \{0\}. \end{cases}$$