INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS – EXERCISES FOR WEEK 4 –

For this week, I do not have many exercises to propose you. If you want more, Evans book as a very interesting section of problems: by now, you should be able to solve all of them. Go to page 84 of [1].

Exercise 0.1. Show the following statement: Let $U \subset \mathbb{R}^n$ be open, bounded and connected, T > 0, and $u \in C^{2;1}(U_T; \mathbb{R}) \cap C^0(\overline{U}_T; \mathbb{R})$ such that $(\partial_t - \Delta)u = 0$ in U_T . If there exists $(x, t) \in U_T$ such that $u(x, t) = \max_{\overline{U}_T} u$, then u is constant on \overline{U}_t .

[This exercise turned out to be more difficult than I expected: It is proven by Evans using the mean value formula for the heat equation.]

Exercise 0.2. Prove the *strong minimum principle* for the heat operator.

Exercise 0.3. Prove the strong maximum principle for the heat operator using the mean-value property; see [1].

Exercise 0.4. State and prove the strong minimum principle for the unbounded Cauchy problem.

Exercise 0.5. Find a counterexample to the uniqueness for the unbounded Cauchy problem

Hint: See [2, chapter 7].

Exercise 0.6. Fix Evans proof of smoothness. See https://math.stackexchange.com/questions/ 5044460/smoothness-of-heat-equation-in-evans-partial-differential-equations-again for details.

References

- L. C. Evans. Partial differential equations. Second. Vol. 19. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010, pp. xxii+749.
- [2] F. John. Partial differential equations. 4th ed. English. Vol. 1. Appl. Math. Sci. Springer, Cham, 1982.

March 19, 2025. Last git commit: e694e97 in branch: master