INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS – EXERCISES FOR WEEK 3 –

Contents

 $\operatorname{Contents}$

1. Random exercises

- 2. Heat Operator
- 3. Fundamental solution for the heat operator
- 4. Solution to the Cauchy problem

1. RANDOM EXERCISES

Exercise 1.1. Let a, b < 0 and define $\phi : (0, 1) \to \mathbb{R}$, $\phi(\theta) = \theta^a \theta^b$. Find the minimum and the point of minimum of ϕ on (0, 1).

Exercise 1.2. Show the Multinomial Theorem:

(1)
$$\left(\sum_{j=1}^{n} x_{j}\right)^{N} = \sum_{|\alpha|=N} \frac{N!}{\alpha!} x^{\alpha}.$$

Exercise 1.3 (Hard: you need to think.). Prove Liouville's Theorem using only the ball mean-value property.

Exercise 1.4. From the proof of the *Representation formula using Green's function* show the following identities:

$$\lim_{\epsilon \to 0} \int_{\partial B(x,\epsilon)} G(x,y) \nabla u(y) \cdot \frac{y-x}{|y-x|} \, \mathrm{d}y = 0,$$
$$\lim_{\epsilon \to 0} \int_{\partial B(x,\epsilon)} u(y) \nabla_y \Phi(y-x) \cdot \frac{y-x}{|y-x|} \, \mathrm{d}y = -u(x),$$
$$\lim_{\epsilon \to 0} \int_{\partial B(x,\epsilon)} u(y) \nabla_y \phi^x(y) \cdot \frac{y-x}{|y-x|} \, \mathrm{d}y = 0.$$

Exercise 1.5. Find the Green function for U = B(0, 1), the unit ball in \mathbb{R}^n .

Hint: Look in Evans' book. To do less work, take his formula for G and check that it is really the Green function.

Exercise 1.6. Prove the following Fundamental Theorem of Calculus of Variations 1.1.

Theorem 1.1 (Fundamental Theorem of Calculus of Variations). If $u \in L^1_{loc}(\mathbb{R}^n)$ is such that

(2)
$$\forall \phi \in C_c^{\infty}(U), \qquad \int_U \phi \cdot u \, \mathrm{d}x = 0,$$

then u = 0 almost everywhere in \mathbb{R}^n .

2. Heat Operator

Exercise 2.1. Define

1

1

1

1

2

(5)

(3)
$$\psi_+ : \mathbb{R}^n \times (0, +\infty) \to \mathbb{R}, \qquad \psi_+(x, t) = \frac{1}{t^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right).$$

Show that $(\partial_t - \Delta)\psi_+ = 0$ in $\mathbb{R}^n \times (0, +\infty)$. Draw a graph of $x \mapsto \psi_+(x, t)$ for positive t when n = 1 (We will see that this function represents a forward propagation: this is why we have a plus.)

Exercise 2.2. Define

(4)
$$\psi_-: \mathbb{R}^n \times (0, +\infty) \to \mathbb{R}, \qquad \psi_-(x, t) = \frac{1}{t^{n/2}} \exp\left(\frac{|x|^2}{4t}\right).$$

Show that $(\partial_t - \Delta)\psi_+ = 0$ in $\mathbb{R}^n \times (0, +\infty)$. Draw a graph of $x \mapsto \psi_+(x, t)$ for positive t when n = 1. (We will see that this function represents a backward propagation: this is why we have a minus.)

Exercise 2.3 (Symmetries of the heat operator). Show the identity (5): Let $U \subset \mathbb{R}^n$ open, $I \subset \mathbb{R}$ an open interval, $u \in C^2(U \times I)$, $O \in O(n)$ and $b \in \mathbb{R}^n$, $\tau \in \mathbb{R}$. Define $\tilde{u}(y,s) = u(Oy + b, s + \tau)$. Then $\tilde{u} \in C^2(O^{-1}(U - b) \times (I - \tau))$ and

$$(\partial_t - \triangle)\tilde{u}(y,t) = (\triangle u)(Oy + b, s + \tau).$$

Exercise 2.4 (More symmetries of the heat operator). Let $U \subset \mathbb{R}^n$ open, $I \subset \mathbb{R}$ an open interval, $u \in C^2(U \times I)$, $O \in O(n)$ and $b \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ and $\lambda, \sigma \in \mathbb{R} \setminus \{0\}$ Define

$$\tilde{u}(y,s) = u(\lambda Oy + b, \sigma s + \tau).$$

Compute $(\partial_t - \Delta)\tilde{u}$ in terms of $(\partial_t - \Delta)u$. Determine for which choices of transformations we have that, if u is a solution to the heat equation, i.e., $(\partial_t - \Delta)u = 0$, then \tilde{u} is also a solution to the heat equation, i.e., $(\partial_t - \Delta)\tilde{u} = 0$.

Exercise 2.5 (Symmetries of the heat operator...). Show that, if $\lambda > 0$ and if $(\partial_t - \Delta)u = 0$, then $(\partial_t - \Delta)\tilde{u} = 0$, where $\tilde{u}(x, t) = u(\lambda x, \lambda^2 t)$.

3. FUNDAMENTAL SOLUTION FOR THE HEAT OPERATOR

Recall that the fundamental solution for the heat operator is the function $\Phi : \mathbb{R}^n \times \mathbb{R} \setminus \{(0,0)\} \to [0,+\infty)$ defined by (6)

$$\Phi(x,t) = \begin{cases} \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right) & \text{for } x \in \mathbb{R}^n \text{ and } t > 0, \\ 0 & \text{otherwise, i.e., } (x,t) \in (\mathbb{R}^n \times (-\infty,0]) \setminus \{(0,0)\}. \end{cases}$$

March 5, 2025. Last git commit: 62878a1 in branch: master

Exercise 3.1. Find the formula for the fundamental solution for the heat equation by Conclude that the function yourself in the following way: look for Φ of the form $\Phi(x,t) = \frac{1}{t^{\alpha}} v\left(\frac{|x|}{t^{\beta}}\right)$, or $\Phi(x,t) = \frac{1}{t^{\alpha}} v\left(\frac{|x|}{t^{\beta}}\right)$ $\frac{1}{t^{\alpha}}v\left(\frac{|x|^2}{t^{\beta}}\right)$, with $(\partial_t - \Delta_x)\Phi = 0$ in $\mathbb{R}^n \times (0, +\infty)$.

Exercise 3.2. Find a proof (by yourself or in the literature) for

(7)
$$\int_{\mathbb{R}} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}.$$

Exercise 3.3 (Smoothness of the fundamental solution). Complete the proof of smooth-(9)ness of the fundamental solution. Specifically, define

(8)
$$\mathscr{F} = \left\{ \phi : \mathbb{R}^n \times \mathbb{R} \setminus \{(0,0)\} \to \mathbb{R} : \begin{array}{l} \exists P(x,t) \text{ polynomial with, for } t > 0, \\ \phi(x,t) = P(x,t^{-1/2}) \exp\left(-\frac{|x|^2}{4t}\right), \\ \text{while } \phi(x,t) = 0 \text{ for } t \le 0. \end{array} \right\}.$$

Then show

(1)
$$\mathscr{F} \subset C^0(\mathbb{R}^n \times \mathbb{R}).$$

(2) if $\phi \in \mathscr{F}$, then $\frac{\partial \phi}{\partial x_j}, \frac{\partial \phi}{\partial t} \in \mathscr{F}$, for all $j \in \{1, \dots, n\}$

Conclude that $\mathscr{F} \subset C^{\infty}(\mathbb{R}^n \times \mathbb{R} \setminus \{(0,0)\}).$

Exercise 3.4 (Derivatives of the fundamental solution). Show that for every t > 0and $x \in \mathbb{R}^n$,

$$\begin{aligned} \nabla_x \Phi(x,t) &= -\frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right) \frac{x}{2t} = -\Phi(x,t) \frac{x}{2t},\\ \partial_t \Phi(x,t) &= \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right) \left(\frac{|x|^2}{4t^2} - \frac{n}{2}\frac{1}{4\pi t}\right) = \Phi(x,t) \left(\frac{|x|^2}{4t^2} - \frac{n}{2t}\right),\\ \mathbf{D}_x^2 \Phi(x,t) &= \Phi(x,t) \left(\frac{x \otimes x}{4t^2} - \frac{\mathrm{Id}}{2t}\right), \end{aligned}$$

where Φ is the fundamental solution of the heat operator. Conclude that $(\partial_t - \Delta_x)\Phi = 0$ in $\mathbb{R}^n \times \mathbb{R} \setminus \{(0,0)\}.$

4. Solution to the Cauchy problem

Exercise 4.1 (Smoothness of solution to the Cauchy problem). Fix $g \in C^0(\mathbb{R}^n) \cap$ $L^{\infty}(\mathbb{R}^n)$. Consider \mathscr{F} as in (8). For $\phi \in \mathscr{F}$, define

$$K_{\phi}(x,t;y) = \phi(x-y,t)g(y).$$

Show that for every $\phi \in \mathscr{F}$, $\epsilon > 0$ and R > 0, there exists a function $h_{R,\epsilon,\phi} \in L^1(\mathbb{R}^n)$ such that

$$|K_{\phi}(x,t;y)| \le h_{R,\epsilon,\phi}(y) \qquad \forall (x,t,y) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \text{ with } |x| \le R \text{ and } t > \epsilon.$$

$$u_{\phi}: x \mapsto \int_{\mathbb{R}^n} \phi(x-y,t)g(y) \,\mathrm{d}y$$

belongs to $C^{\infty}(\mathbb{R}^n \times (0, +\infty))$. Moreover, conclude that $(\partial_t - \Delta)u = 0$ in $\mathbb{R}^n \times (0, +\infty)$. **Exercise 4.2** (Maybe wait next week for this one). Prove the following Lemma 4.1.

Lemma 4.1. Let T > 0 and $g \in C^0(\mathbb{R}^n \times [0,T]) \cap L^\infty(\mathbb{R}^n \times [0,T])$. Then, for every $\hat{x} \in \mathbb{R}^n$,

$$\lim_{\substack{(x,t)\to(\hat{x},0)\\t>0}} \int_{\mathbb{R}^n} \Phi(z,t) g(\hat{x}-z,t) \,\mathrm{d}z = g(\hat{x},0).$$