INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS - Exercises for Week 2 -

CONTENTS

Contents

1. Spherical averages

2. Mean value formulas

3. Maximum principle

4. Subharmonic and superharmonic functions

1. Spherical averages

Let $X \subset \mathbb{R}^m$ and $Y \subset \mathbb{R}^n$ be open sets. For $u \in L^1_{loc}(X \times Y), x \in X, y \in Y$ and r > 0 with $B(y, r) \subset Y$, define

(1)

$$\phi_u(x,y;r) := \int_{B(y,r)} u(x,z) \, dz = \int_{B_Y(0,1)} u(x,y+rz) \, dz,$$

$$\psi_u(x,y;r) := \int_{\partial B(y,r)} u(x,z) \, dS(z) = \int_{\partial B(0,1)} u(x,y+rz) \, dS(z).$$

Exercise 1.1. Show that, if *u* is continuous, then

(2)
$$u(x,y) = \lim_{r \to 0} \phi_u(x,y;r) = \lim_{r \to 0} \psi_u(x,y;r).$$

Exercise 1.2. Show the following statements.

If $u \in C^{a;b}(X \times Y)$, with $a, b \in \mathbb{N}$, then, for every $\epsilon > 0, \ \phi_u, \psi_u \in C^{a;b\lfloor b/2 \rfloor}(X \times Y)$ $Y_{\epsilon} \times (0, \epsilon)$, where $Y_{\epsilon} = \{y \in Y : d(y, \partial Y) > \epsilon\}$.

Moreover, for all $\alpha \in \mathbb{N}^m$ and $\beta \in \mathbb{N}^n$, with $|\alpha| \leq a$ and $|\beta| \leq b$,

(3)
$$D_x^{\alpha} D_y^{\beta} \phi_u = \phi_{D_x^{\alpha} D_y^{\beta} u} \quad \text{and} \quad D_x^{\alpha} D_y^{\beta} \psi_u = \psi_{D_x^{\alpha} D_y^{\beta} u}.$$

Finally.

(4)
if
$$b \ge 0$$
, $\partial_r \phi_u(x, y; r) = \frac{n}{r} (\psi_u(x, y; r) - \phi_u(x, y; r)),$
if $b \ge 2$, $\partial_r \psi_u(x, y; r) = \frac{r}{n} \phi_{\triangle_y u}(x, y; r) \stackrel{(3)}{=} \frac{r}{n} \triangle_y \phi_u(x, y; r).$

2. Mean value formulas

Exercise 2.1. For all n > 2, compute

$$\psi_{\Phi}(0;r) := \int_{\partial B(0,r)} \Phi(y) \,\mathrm{d}S(y),$$

where Φ is the fundamental solution of the Laplace equation. Is $r \mapsto \psi_{\Phi}(0; r)$ constant? Do we have a contradiction with the mean value formula proved in class?

Exercise 2.2. Show that, if $U \subset \mathbb{R}^n$ is open and $u \in C^0(U)$, then the following statements are equivalent:

(i)
$$\forall x \in U, \forall r > 0$$
, such that $\overline{B}(x, r) \subset U$,

$$\begin{array}{l}
1\\
1
\end{array} (5) \qquad \qquad u(x) = \int_{\partial B(x,r)} u(y) \mathrm{d}S(y).
\end{array}$$

(ii)
$$\forall x \in U, \forall r > 0$$
, such that $\overline{B}(x, r) \subset U$,

(6)
$$u(x) = \int_{B(x,r)} u(y) \mathrm{d}S(y).$$

3. MAXIMUM PRINCIPLE

Exercise 3.1. Show that, if $u \in C^0(B(0,r);\mathbb{R})$ is such that $u \leq M$ on B(0,r), then $\oint_{B(x,r)} u(y) \, \mathrm{d}y \leq M$, with equality if and only if u = M on B(0,r).

Exercise 3.2. Show the following statement: Let X be a locally connected topological space and $U \subset X$ open. Let $C \subset U$ be a connected component of U. Then $\partial C \subset \partial U$.

After this, show that the hypothesis of X being locally connected is necessary. In other words, find an example of a topological space X that is not locally connected, and $U \subset X$ open that has a connected component $C \subset U$ with $\partial C \cap \partial U = \emptyset$.

Exercise 3.3. State and prove the *Strong Minimum Principle* for harmonic functions, both in the first and second versions.

Exercise 3.4. Show the strong maximum and minimum principles for harmonic functions without using the mean value property, i.e., explicitly using that $\Delta u = 0$.

Hint: First consider $u \in C^2(U; \mathbb{R})$ with $\Delta u > 0$ in U. Suppose $x \in U$ is such that $u(x) = \max_U u$. Then t = 0 is a point of maximum for $t \mapsto u(x + te_i)$, for each $j \in \{1, \ldots, n\}$. Therefore $\frac{\partial^2 u}{\partial x_i^2}(x) = \left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \right|_{t=0} u(x+te_j) \le 0.$

Exercise 3.5. Write a proof of the following corollary.

Corollary 3.1 (Monotonicity of Laplace's boundary value problem). Let $U \subset \mathbb{R}^n$ open, bounded and connected. Let $u \in C^2(U; \mathbb{R}) \cap C^0(\overline{U}; \mathbb{R})$ and $q \in C^0(\partial U; \mathbb{R})$ be such that

$$\begin{cases} \triangle u = 0 & \text{ in } U, \\ u = g & \text{ on } U. \end{cases}$$

If g is not constant and $g \ge 0$ on ∂U , then u > 0 on U.

1

1

1

1

February 26, 2025. Last git commit: 1d5f5ec in branch: master

 $\mathbf{2}$

4. Subharmonic and superharmonic functions

Let $U \subset \mathbb{R}^n$ open. A function $u \in C^2(U)$ is subharmonic if and only if $\Delta u \ge 0$ on U.

Exercise 4.1. State and prove a theorem "Mean value formula for subharmonic functions".

[*Remark*: Notice that subharmonic do NOT have a mean-value property, but something similar: follow the proof we have done in class for harmonic functions and adapt it to subharmonic functions. You will get some statement.]

Exercise 4.2. State and prove a theorem "Strong maximum principle for subharmonic functions".

Exercise 4.3. Find examples of subharmonic functions that are not harmonic. Find a subharmonic function that does not satisfy the minimum principle.

A function $u \in C^2(U)$ is superharmonic if and only if $\Delta u \leq 0$ on U.

Exercise 4.4. Do Exercises 4.1, 4.2 and 4.3 for superharmonic functions, exchanging "maximum" and "minimum".

Exercise 4.5. Write and prove a version of Corollar **??** for sub- and superharmonic functions.