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1. Exercise 1: Divergence theorem

The divergence of a vector field v ∈ C1(Ū ;Cn) is

(1) div(v) =

n∑
j=1

∂vj
∂xj
∈ C(U).

Exercise 1.1. Prove the following: If f ∈ C1(U) and v ∈ C1(U ;Cn), then

(2) div(fv) = ∇f · v + f div(v).

Theorem 1.1 (Divergence Theorem: [Tre75, Lemma 10.1]). Let U ⊂ Rn be an open
set with C1 boundary ∂U . We denote by ν : ∂U → Sn−1 the outward normal. Let
v ∈ C1(Ū ;Cn) be a vector field. Then

(3)
∫
U

div(v) dx =

∫
∂U

v · ν dS(x).

Use the divergence theorem to prove the following identities:

Exercise 1.2. Let U ⊂ Rn be an open set with C1 boundary ∂U and outward
normal ν : ∂U → Sn−1. Show that, if u, v ∈ C1(Ū), then

(4)
∫
U

∂u

∂xj
· v dx = −

∫
U

u · ∂v
∂xj

dx+

∫
∂U

uvνi.
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Exercise 1.3. Let U ⊂ Rn be an open set with C1 boundary ∂U and outward
normal ν : ∂U → Sn−1. Show that, if u, v ∈ C2(Ū), then∫

U

4udx =

∫
∂U

Du · ν dS,(5) ∫
U

Du ·Dv dx = −
∫
U

u4v +

∫
∂U

uDv · ν dS,(6) ∫
U

(u4v − v4u) dx =

∫
∂U

(uDv − vDu) · ν dS.(7)

2. Exercise 2: Coarea formula

Theorem 2.1 (Coarea Formula:[AFP00, Theorem 2.93& Remark 2.94]). Let Ω ⊂ Rn
be an open set and F : Ω → Rk a C1-submersion, that is, a C1-smooth map with
surjective differential at each point. As a consequence, we have that F (Ω) is open in
Rk and that, for every y ∈ F (Ω), the set F−1(y) ⊂ Ω is an immersed submanifold
of dimension n− k.

Then, for every u ∈ L1(Ω) with compact support,

(8)
∫

Ω

u(x)J(DF (x)) dx =

∫
F (Ω)

∫
F−1(y)

u(x)dSn−k(x)dy,

where

(9) J(DF (x)) =
√

det(DF (x)×DF (x)T ) =

√ ∑
B∈{k×k minors of DF (x)}

det(B)2.

Exercise 2.1. Compute J(DF ) as in (9) when k = 1 and when k = n− 1.

Exercise 2.2. Show that, for Ω ⊂ Rn open,

(10)
∫

Ω

u(x) dx =

∫ ∞
0

∫
∂B(0,r)∩Ω

u(x) dSn−1(x) dr ∀u ∈ C0(Ω).

From Theorem 2.1, we can deduce seemingly more general results. For instance,
a coarea formula on the sphere:

Exercise 2.3. Show the following formulas. Let Sn−1 the unit sphere in Rn centered
at 0. If f ∈ C1(Rn), then, for every u ∈ C0(Sn−1),

(11)
∫
Sn−1

u(x)|∇f(x)−(∇f(x)·x)x|dSn−1(x) =

∫
R

∫
Sn−1∩{f=z}

u(x) dSn−2(x) dz.

For example, if f(x) = xn, then, for every u ∈ C0(Sn−1),

(12)
∫
Sn−1

u(x)
√

1− x2
n dSn−1(x) =

∫ 1

−1

∫
Sn−1∩{f=z}

u(x) dSn−2(x) dz.
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3. Exercise 3: Volume of balls

Exercise 3.1. Compute the volume of the ball B(0, 1) of radius 1 in Rn, that is,

(13) αn := Ln(B(0, 1)) = |B(0, 1)|.

Exercise 3.2. Show that the surface measure of the sphere ∂B(0, r) satisfies

(14) Sn−1(∂B(0, r)) =
d

dr
|B(0, r)| = nαnr

n−1.

Exercise 3.3. Show that, if u ∈ C0(∂B(0, r)) for some r > 0, then

(15)
∫
∂B(0,r)

u(x) dSn−1(x) =

∫ r

−r

∫
∂B(0,r)∩{x3=z}

u(x) dSn−2(x)
1√

r2 − z2
dz.

Exercise 3.4. For k > 0, compute the integral

(16)
∫
B(0,R)

1

|x|k
dx.

4. Exercise 4: Laplacian

Exercise 4.1. Let u ∈ C2(U), O ∈ O(n), b ∈ Rn, λ 6= 0 real. Define ū(y) =
u(λ(Oy + b)). Compute 4ū in terms of 4u.

Exercise 4.2. Consider the differential operator on R2

(17) P = 2
∂2

∂x2
+ 2

∂2

∂x∂y
+

∂2

∂y2
.

Find coordinates on R2 such that, in the new coordinates, P is the Laplace operator.

Exercise 4.3. Describe harmonic polynomials of degree 3 in two variables.

Exercise 4.4. Compute the laplacian of the functions Rn → C,

(18) uv+iw(x) = exp(v · x+ iw · x)

where v, w ∈ Rn.

Exercise 4.5. (Try to) find nonzero solutions u ∈ C∞(Rn) to the PDE

(19) −4u = λu

for λ ∈ C. (These functions u are called eigenfunctions of the Laplacian. Not every
λ gives a solution).

5. Exercise 5: Mollifiers

Exercise 5.1. Consider the function φ : R→ R,

(20) φ(x) =

{
0 x ≤ 0,

exp(−1/x) x > 0.

Show that φ ∈ C∞(R).

Exercise 5.2. Show that there exists φ ∈ C∞c (Rn) such that spt(φ) ⊂ B(0, 1), φ ≥ 0
and

∫
Rn φ(x) dx = 1.

Exercise 5.3 (Fundamental theorem of calculus of variations). Let U ⊂ Rn. Sup-
pose that f ∈ L1

loc(U) is such that

(21)
∫
U

f(x)φ(x) dx = 0 ∀φ ∈ C∞c (U).

Show that f = 0 almost everywhere in U .

Exercise 5.4. Let ψ ∈ C∞c (Rn) and f ∈ L1
loc(Rn). Define

(22) f ? ψ(x) :=

∫
Rn

f(y)ψ(x− y) dy

Prove the following:
(1) f ? ψ(x) =

∫
Rn f(x− y)ψ(y) dy.

(2) f ? ψ ∈ C∞(Rn).
(3) For every j ∈ {1, . . . , n}, ∂

∂xj
(f ? ψ) = f ? ∂ψ

∂xj
.

Exercise 5.5. Let ψ ∈ C∞c (Rn) such that
∫
Rn ψ = 1. For ε > 0, define

(23) ψε(x) :=
1

εn
ψ(x/ε).

Prove the following:
(1) If f ∈ L1

loc(Rn), then, for almost every x ∈ Rn, limε→0 f ? ψε(x) = f(x).
(2) If p ∈ [1,∞] and f ∈ Lp(Rn), then limε→0 ‖f ? ψε − f‖Lp = 0.
(3) If f ∈ C0(Rn), then f ? ψε → f uniformly on compact sets, as ε→ 0.
(4) If k ≥ 1 and f ∈ Ck(Rn), then, for all α ∈ Nn with |α| ≤ k, Dα

x (f ? ψε) →
Dα
xf uniformly on compact sets, as ε→ 0.

Exercise 5.6. Show that, if K b U ⊂ Rn, where K is compact and U is open, then
there exists ψ ∈ C∞(Rn) such that φ(Rn) ⊂ [0, 1], K ⊂ {ψ = 1} and spt(ψ) ⊂ U .
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