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Part 0. Preliminaries

In this first preliminary part, we will touch superficially several notions that we will
refer to along the lecture notes.

1. Pairings, dot and scalar products, etc...

There is a flourishing art of making products of stuff in mathematics and physics. But
notation lacks. So, here are my choices.

§1.1. Dot Product. If a, b ∈ Cn, then

a · b =

n∑
j=1

ajbj .

§1.2. Scalar or inner product. If a, b ∈ Cn, then

〈a, b〉 =

n∑
j=1

aj b̄j = a · b̄.

More generally, if µ is a measure and a, b ∈ L2(µ;Cn) are complex-valued functions

〈a, b〉 = 〈a, b〉µ =

∫
a(x) · b̄(x) dµ(x).

These are inner products, with the properties (λ ∈ C)

〈a, b〉 = 〈b, a〉, 〈a, λb〉 = λ̄〈a, b〉,
〈a, a〉 ∈ [0,+∞), 〈λa, b〉 = λ〈a, b〉.

§1.3. Pairing. If V is a vector space (over some field K, e.g., K = C) with algebraic dual
V ∗ (that is, the space of all linear maps V → K), then, for all a ∈ V ∗ and b ∈ V ,

〈a|b〉 = a[b] ∈ K (which is the evaluation of a in b) .

Sometimes, we can make it more precise

V ∗〈a|b〉V = a[b].

In general, if b ∈ V and a ∈ Lin(V ;W ) for some linear space W ,

〈a|b〉 = a[b] ∈W.
With this in mind, it is clear that

〈a|b〉 = 〈b|a〉.
For instance, V ∗〈a|b〉V = V 〈b|a〉V ∗ .

Pairings have the following properties (λ ∈ K):

〈a|b〉 = 〈b|a〉,
〈λa|b〉 = λ〈a|b〉,
〈a|λb〉 = λ〈a|b〉.

§1.4. Example in L2(µ). To put everything together, we see that, if a, b ∈ L2(µ), define
B, B̄ ∈ L2(µ)∗ as

B[φ] =

∫
b · φdµ, ∀φ ∈ L2(µ),

B̄[φ] = 〈φ, b〉, ∀φ ∈ L2(µ).

Then

〈a, b〉 =

∫
a · b̄ dµ = 〈B̄|a〉 = 〈B|ā〉

and

〈B|a〉 = 〈a|b̄〉 = 〈b|ā〉.
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2. Derivatives

Let n,m ∈ N. We denote by e1, . . . , en the standard basis of Rn.
Let Ω ⊂ Rn be an open set and f : Ω→ Cm and x ∈ Ω. The derivative of f at x, if it

exists, is the R-linear map Df(x) : Rn → Cm such that

lim
y→x
‖f(y)− f(x)−Df(x)[y − x]‖

‖y − x‖ = 0.

The partial derivative of f are

∂f

∂xj
(x) := Df(x)[ej ] = lim

h→0

f(x+ hej)− f(x)

h
∈ Cm.

The gradient of f is (if it exists)

∇f :=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

The gradient is mostly used for scalar functions, that is, when m = 1.
If α ∈ Nn is a multiindex, we set |α| :=

∑n
j=1 αj and we denote by ∂αf or Dαf the

partial derivative of f given by

Dαf =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
f.

If a function f(x, y) depends on several variables, we write Dxf or ∂xf to denote the
derivatives of f in the directions of x.

The space of functions Ω→ Cm that are continuous, differentiable and with continuous
derivatives up to order k ∈ N is denote by Ck(Ω;Cm). If m = 1, then we just write
Ck(Ω). We write Ck(Ω̄;Cm) for the space of functions that are smooth of class Ck on a
neighborhood of Ω̄.

If the domain of a function u is described as a product of open sets X ⊂ Rm and
Y ⊂ Rn, so u : X × Y → C, we may require different regularity in the two entries. So, we
say that u ∈ Ca;b(X × Y ) for some a, b ∈ N if, for every y ∈ Y , u(·, y) ∈ Ca(X), and for
every x ∈ X, u(x, ·) ∈ Cb(Y ).

Notice that Ca,b(X) (with comma in place of semicolumn) is usually reserved for func-
tions of class Ca whose a-th order derivative is b-Hölder. In this case, we would have
a ∈ N and b ∈ [0, 1].

3. Measures

§3.1. Lp spaces. Let (X,M , µ) be a measure space, that is, X is a set endowed with
a σ-algebra M ⊂ 2X and µ : M → [0,+∞] is a measure. In fact, we will mostly have
X = Ω ⊂ Rn open subset of Rn, M the Borel σ-algebra and µ the Lebesgue measure.

For u : X → C measurable and p ∈ [1,+∞), define

‖u‖Lp := ‖u‖Lp(X) :=

(∫
X

|u(x)|p dµ(x)

)1/p

.

The space Lp(X) or Lp(µ) is the Banach space of all equivalence classes of measurable
functions u : X → C with ‖u‖Lp <∞, where two functions are identified if they are equal
µ-almost everywhere.

Sometimes, when we write “u ∈ Lp(X)”, we mean that u is a specific function, not an
equivalence class.

§3.2. Hölder and Minkowski inequalities. Let (X,M , µ) be a measure space. Let
u, v : X → C and uj : X → C, j ∈ {1, . . . , k}, be measurable functions.

(Hölder)
∀p, p′ ∈ [1,+∞), with 1

p
+ 1

p′ = 1,∫
X
u(x)v(x) dµ(x) ≤ ‖u‖Lp(X)‖v‖Lp′ (X).

(General Hölder)
∀{pj}kj=1 ⊂ [1,+∞), with

∑k
j=1

1
pj

= 1,∫
X

∏k
j=1 uj(x) dµ(x) ≤∏k

j=1 ‖uj‖Lpj (X).
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(Minkowski) ∀p ∈ [1,∞] ‖u+ v‖Lp ≤ ‖u‖Lp(X) + ‖v‖Lp(X).

§3.3. Approximation with continuous functions.

Theorem 3.1. Let Ω ⊂ Rn open and p ∈ [1,∞). The space Cc(Ω) of continuous functions
with compact support in Ω is dense in Lp(Ω).

Proof. [8, Proposition (7.9)] �

§3.4. Dominated Convergence Theorem.

Theorem 3.2 (LDCT, Lebesgue Dominated Convergence Theorem [8, Theorem 2.24]).
Let (X,µ) be a measure space, T a topological space with t̂ ∈ T , and f : T × X → R
a function such that there exists g ∈ L1(µ) with |f(t, x)| ≤ g(x) for all (t, x) ∈ T × X.
Suppose that, for µ-a.e. x ∈ X, the limit limt→t̂ f(t, x) exists. Then

lim
t→t̂

∫
X

f(t, x) dµ(x) =

∫
X

(lim
t→t̂

f(t, x)) dµ(x).

§3.5. Functions defined by integrals.

Theorem 3.3 (Integral with parameter). Let X ⊂ Rm be an open set and (Y, µ) a measure
space. Let K : X × Y → C be a measurable function and set

F (x) :=

∫
Y

K(x, y) dµ(y),

for all x ∈ X such that y 7→ K(x, y) is µ-integrable, i.e., such that
∫
Y
|K(x, y)| dµ(y) <∞.

(3.3.1) If

(1) ∃g ∈ L1(Y ) ∀(x, y) ∈ X × Y |K(x, y)| ≤ g(y)

then F is defined for all x ∈ X and F ∈ L∞(X). In particular, ‖F‖L∞(X) ≤
‖g‖L1(Y ).

(3.3.2) If (1) holds, and if

(2) ∀y ∈ Y K(·, y) ∈ C0(X),

then F ∈ C0(X).
(3.3.3) If (1) and (2) hold, and if

(3) ∀y ∈ Y : K(·, y) ∈ C1(X), and ∃g1 ∈ L1(Y )∀(x, y) ∈ X×Y : |DxK(x, y)| ≤ g1(y),

then F ∈ C1(X) and, for every x ∈ X,

(4) DxF (x) =

∫
Y

DxK(x, y) dµ(y).

Proof. Proof of (3.3.1). The condition (1) implies directly that K(x, ·) ∈ L1(Y ) and that,
for every x ∈ X,

|
∫
Y

K(x, y) dµ(y)| ≤
∫
Y

|K(x, y)| dµ(y) ≤ ‖g‖L1(Y ).

Proof of (3.3.2). Let {xj}j∈N ⊂ X be a sequence converging to x∞ ∈ X. Condition (1)
allows us to apply the Lebesgue Dominated Convergence Theorem 3.2,

F (x∞) =

∫
Y

K(x∞, y) dµ(y)

[by K(·, y) ∈ C0(X)] =

∫
Y

lim
j→∞

K(xj , y) dµ(y)

[by LDCT and (1)] = lim
j→∞

∫
Y

K(xj , y) dµ(y) = lim
j→∞

F (xj).

This shows that F ∈ C0(X).
Proof of (3.3.3). Fix x̂ ∈ X and i ∈ {1, . . . ,m} and ĥ > 0 such that B(x̂, ĥ) b X. For

h ∈ (−ĥ, ĥ), we have
F (x̂+ hei)− F (x̂)

h
=

∫
Y

K(x̂+ hei, y)−K(x̂, y)

h
dµ(y).
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Notice that for every h ∈ (−ĥ, ĥ) and every y ∈ Y there exists h′ ∈ (−h, h) such that

K(x̂+ hei, y)−K(x̂, y)

h
=
∂K

∂xi
(x̂+ h′ei, y).

Hence, by (3),

(5)
∣∣∣∣K(x̂+ hei, y)−K(x̂, y)

h

∣∣∣∣ ≤ ∣∣∣∣∂K∂xi (x̂+ h′ei, y)

∣∣∣∣ ≤ g1(y).

Therefore, we can apply the Lebesgue Dominated Convergence Theorem 3.2, to obtain∫
Y

∂K

∂xi
(x̂, y) dy =

∫
Y

lim
h→0

K(x̂+ hei, y)−K(x̂, y)

h
dµ(y)

[by LDCT and (5)] = lim
h→0

∫
Y

K(x̂+ hei, y)−K(x̂, y)

h
dµ(y)

= lim
h→0

F (x̂+ hei)− F (x̂)

h
.

This shows that F is differentiable at every point, with identity (4). By (3.3.2), DxF is
continuous. �

Corollary 3.4. Let X ⊂ Rm be an open set and (Y, µ) a measure space. Let K : X×Y →
C be a measurable function and set

F (x) =

∫
Y

K(x, y) dµ(y),

for all x ∈ X such that y 7→ K(x, y) is integrable.
Suppose that

∀y ∈ Y : K(·, y) ∈ C∞(X), and
∀α ∈ Nm ∃gα ∈ L1(Y ) ∀(x, y) ∈ X × Y : |Dα

xK(x, y)| ≤ g1(y).

Then F ∈ C∞(X).

The following Proposition 3.5 is a direct consequence of Theorem 3.3 and the Hölder
inequality.

Proposition 3.5. Let X ⊂ Rm and Y ⊂ Rn be open sets, k ∈ N and p ∈ [1,∞]. Let
K : X × Y → C be a measurable function such that:

(1) for every y ∈ Y , the function x 7→ K(x, y) belongs to Ck(Y );
(2) for every E b X and α ∈ Nn with |α| ≤ k, there exists gα,E ∈ Lp(Y ) such that,

for every x ∈ E and every y ∈ Y ,∣∣∣∣∂|α|K∂xα
(x, y)

∣∣∣∣ ≤ gα,E(y).

For q ∈ [1,∞] with 1/p+ 1/q = 1 and f ∈ Lq(Y ), define TKf as

TKf(x) =

∫
Y

K(x, y)f(y) dy.

Then TKf ∈ Ck(X) and, for every α ∈ Nm with |α| ≤ k,
∂|α|

∂xα
TKf = T ∂|α|K

∂xα
f.

§3.6. Fundamental Theorem of Calculus of Variations.

Theorem 3.6 (Fundamental Theorem of Calculus of Variations). If u ∈ L1
loc(Rn) is such

that

∀φ ∈ C∞c (U),

∫
U

φ · u dx = 0,

then u = 0 almost everywhere in Rn.

Exercise 3.7. Prove the Fundamental Theorem of Calculus of Variations 3.6. ♦
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4. Divergence theorem

Given an open set U ⊂ Rn, the divergence of a vector field v ∈ C1(U ;Cn) is

div(v) =

n∑
j=1

∂vj
∂xj
∈ C(U).

Theorem 4.1 (Divergence Theorem [14, Lemma 10.1]). Let U ⊂ Rn be an open set with
C1 boundary ∂U . We denote by ν : ∂U → Sn−1 the outward normal. Let v ∈ C1(Ū ;Cn)
be a vector field. Then

(6)
∫
U

div(v) dx =

∫
∂U

v · ν dS(x).

Recall that the integral in dS is the surface integral over ∂U . One can think of dS as
the Hausdorff measure of dimension n− 1.

Remark 4.2. You might have seen the divergence Theorem 4.1 for real vector fields. In
the case of a complex vector field, we have v = v1 + iv2 with v1, v2 ∈ C1(Ū ;Rn). Then∫

U

div(v) dx =

∫
U

div(v1) dx+ i

∫
U

div(v2) dx

=

∫
∂U

v1 · ν dS(x) + i

∫
∂U

v2 · ν dS(x)

=

∫
∂U

(v1 + iv2) · ν dS(x).

Notice that ν has necessarily real components and thus ν̄ = ν. In other words, we could
also write v · ν = v · ν̄ = 〈v, ν〉, as the hermitian product of complex vectors.

Remark 4.3. Formula (6) is usually paired with the following formula for the divergence:
if f ∈ C1(U) and v ∈ C1(U ;Cn), then

(7) div(fv) = ∇f · v + f div(v).

Indeed,

div(fv) =

n∑
j=1

∂(fvj)

∂xj

=

n∑
j=1

(
∂f

∂xj
vj + f

∂vj
∂xj

)
= ∇f · v + f div(v).

It follows that ∫
U

(∇f · v + f div(v)) dx =

∫
∂U

fv · ν dS(x).

5. Coarea formulas

§5.1. Intro to surface measures. If Σ ⊂ Rn is an m-dimensional immersed C1-
submanifold, we denote by Sm the m-dimensional surface measure on Σ. We can describe
Sm as the Hausdorff m-dimensional measure, or, being the submanifold smooth, as an
integral of m-differential forms on Σ. We can also obtain several formulas for its explicit
use. However, we will use a list of properties of these measures, and we do not need further
details.

We need the symmetries of Sm: it is translation invariant, rotation invariant and scales
properly under dilations. More precisely, if Σ ⊂ Rm is an immersed submanifold and if
O ∈ O(n) is an orthogonal matrix, v ∈ Rn and r > 0, then

(8)
∫
r(OΣ+v)

u(x)dSm(x) = rm
∫

Σ

u(r(Ox+ v))dSm(x), ∀u ∈ C0(Rn).
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§5.2. Coarea formula.

Theorem 5.1 (Coarea Formula:[2, Theorem 2.93& Remark 2.94]). Let Ω ⊂ Rn be an
open set and F : Ω → Rk a C1-submersion, that is, a C1-smooth map with surjective
differential at each point. As a consequence, we have that F (Ω) is open in Rk and that,
for every y ∈ F (Ω), the set F−1(y) ⊂ Ω is an immersed submanifold of dimension n− k.

Then, for every u ∈ L1(Ω) with compact support,

(9)
∫

Ω

u(x)J(DF (x)) dx =

∫
F (Ω)

∫
F−1(y)

u(x)dSn−k(x)dy,

where

(10) J(DF (x)) =
√

det(DF (x)×DF (x)T ) =

√ ∑
B∈{k×k minors of DF (x)}

det(B)2.

Exercise 5.2. Compute J(DF ) as in (10) when k = 1 and when k = n− 1. ♦

§5.3. Consequences of the coarea formula: spherical integrals.

Proposition 5.3. If Ω ⊂ Rn is open, then

(11)
∫

Ω

u(x) dx =

∫ ∞
0

∫
∂B(0,r)∩Ω

u(x) dSn−1(x) dr ∀u ∈ C0(Ω).

Proof. Consider the function F : Rn \{0} → R, F (x) = |x|. Then J(DF (x)) = |∇F (x)| =
1 for all x ∈ Rn \ {0}. So, Coarea Formula (9) gives immediately the identity (11). �

§5.4. Consequences of the coarea formula: on the sphere. From Theorem 5.1, we
can deduce seemingly more general results. For instance, a coarea formula on the sphere:

Proposition 5.4. Let Sn−1 the unit sphere in Rn centered at 0. If f ∈ C1(Rn;R), then,
for every u ∈ C0(Sn−1),∫

Sn−1

u(x)|∇f(x)− (∇f(x) · x)x| dSn−1(x) =

∫
R

∫
Sn−1∩{f=z}

u(x) dSn−2(x) dz.

For example, if f(x) = xn, then, for every u ∈ C0(Sn−1),

(12)
∫
Sn−1

u(x)
√

1− x2
n dSn−1(x) =

∫ 1

−1

∫
Sn−1∩{f=z}

u(x) dSn−2(x) dz.

Moreover, we have

(13)
∫
Sn−1

u(x) dSn−1(x) =

∫ 1

−1

∫
Sn−1∩{x3=z}

u(x) dSn−2(x)
1√

1− z2
dz,

and

(14)
∫
∂B(0,r)

u(x) dSn−1(x) =

∫ r

−r

∫
∂B(0,r)∩{x3=z}

u(x) dSn−2(x)
1√

r2 − z2
dz.

Proof. Fix u ∈ C0(Sn−1) and ε > 0. Define Ωε = B(0, 1 + ε) \B(0, 1) and ũ ∈ C0(Ωε) by
ũ(x) = u(x/|x|).

Define F : Rn \ {0} → R2 by F (x) = (|x|, f(x)). Notice that

DF (x) =

(
· · · x/|x| · · ·
· · · ∇f(x) · · ·

)
,

DF (x)DF (x)T =

(
1 x

|x| · ∇f(x)
x
|x| · ∇f(x) ∇f(x) · ∇f(x)

)
,

det(DF (x)DF (x)T ) = |∇f(x)|2 −
(
x

|x| · ∇f(x)

)2

=

∣∣∣∣∇f(x)−
(
x

|x| · ∇f(x)

)
x

|x|

∣∣∣∣2 .
On the one hand, using the coarea formula for F , we have∫

Ωε

ũ(x)J(DF (x)) dx
(9)
=

∫
F (Ωε)

∫
{F (x)=y}

ũ(x) dSn−2(x) dy
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=

∫ 1+ε

1

∫
R

∫
{|x|=r,f(x)=z}

u(x/r) dSn−2(x) dz dr.

On the other hand, using the coarea formula for spheres, that is (11),∫
Ωε

ũ(x)J(DF (x)) dx
(11)
=

∫ 1+ε

1

∫
∂B(0,r)

ũ(x)J(DF (x)) dSn−1(x) dr

(8)
=

∫ 1+ε

1

rn−1

∫
∂B(0,1)

u(x)J(DF (rx)) dSn−1(x) dr.

Therefore, ∫
Sn−1

u(x)|∇f(x)− (∇f(x) · x)x| dSn−1(x)

= lim
ε→0
−
∫ 1+ε

1

rn−1

∫
∂B(0,1)

u(x)J(DF (rx)) dSn−1(x) dr

= lim
ε→0
−
∫ 1+ε

1

∫
R

∫
{|x|=r,f(x)=z}

u(x/r) dSn−2(x) dz dr

=

∫
R

∫
Sn−1∩{f=z}

u(x) dSn−2(x) dz.

Formula (12) follows from a direct computation.
The subsequent formula (13) is instead the result of a limit. For u ∈ C0(Sn−1), set

uε(x) :=
min{1, (1− x2

n)/ε}√
1− x2

3

· u(x).

Then we plug uε into (12). On the one hand, we have∫
Sn−1

uε(x)
√

1− x2
n dSn−1(x)

=

∫
Sn−1∩{1−x2

n≥ε}
u(x) dSn−1(x) +

∫
Sn−1∩{1−x2

n<ε}
u(x)

1− x2
n

ε
dSn−1(x).

If we take the limit ε→ 0 we obtain

lim
ε→0

∫
Sn−1∩{1−x2

n≥ε}
u(x) dSn−1(x) =

∫
Sn−1

u(x) dSn−1(x)

and

lim
ε→0

∫
Sn−1∩{1−x2

n<ε}
u(x)

1− x2
n

ε
dSn−1(x) = 0.

On the other hand, we have∫ 1

−1

∫
Sn−1∩{x3=z}

uε(x) dSn−2(x) dz

=

∫ √1−ε

−√1−ε

∫
Sn−1∩{x3=z}

u(x)√
1− x2

n

dSn−2(x) dz

+

∫
[−1,1]\[−√1−ε,√1−ε]

∫
Sn−1∩{x3=z}

u(x)

√
1− z2

ε
dSn−2(x) dz.

Taking the limit ε→ 0, we obtain the right-hand side of (13).
The last formula (14) follows from the previous (13): take ũ(x) := u(rx). Then∫
r∂B(0,r)

u(x) dSn−1(x) = rn−1

∫
∂B(0,1)

u(rx) dSn−1(x)

(13)
= rn−1

∫ 1

−1

∫
Sn−1∩{x3=z}

u(rx) dSn−2(x)
1√

1− z2
dz

z̄=rz
= rn−1

∫ r

−r

∫
Sn−1∩{x3=z̄/r}

u(rx) dSn−2(x)
1√

1− (z̄/r)2

dz̄

r

x̄=rx
=

∫ r

−r

∫
rSn−1∩{x̄3=z̄}

u(x̄) dSn−2(x̄)
r√

r2 − z̄2

dz̄

r
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=

∫ r

−r

∫
rSn−1∩{x̄3=z̄}

u(x̄) dSn−2(x̄)
1√

r2 − z̄2
dz̄.

�

§5.5. Change of variables.

Theorem 5.5 (Change of variables). Let X,Y ⊂ Rn be open sets and φ : X → Y a
diffeomorphism. Then, for every u ∈ L1(Y ),∫

X

u(φ(x))|Jφ(x)| dx =

∫
Y

u(y) dy,

where Jφ(x) = det(Dφ(x)).

Theorem 5.5 holds for the non-oriented integral. When dealing with oriented integrals,
we need to take care of the sign of the jacobian Jφ. For example, line integrals are
usually oriented: If a < b and f ∈ L1([a, b]), then

∫ b
a
f(s) ds is a oriented integral, while∫

[a,b]
f(s) ds is not oriented. This distinction becomes clear by the identities

(15)
∫

[a,b]

f(s) ds =

∫ b

a

f(s) ds = −
∫ a

b

f(s) ds.

The root of the distinction is the following. A non-oriented integral is the integral of
a function f over a measure space (X,µ):

∫
X
f dµ. A oriented integral is the integral

of a differential form: for example,
∫
R2 f(x, y)dx ∧ dy = −

∫
R2 f(x, y)dy ∧ dx. In the

case of integrals of differential forms, the change of variables states:
∫
φ∗ω =

∫
ω and

φ∗(dx1 ∧ · · · ∧ dxn) = Jφ · (dx1 ∧ · · · ∧ dxn).
On Rn with n > 1, we usually think of “dx” as dLn(x), where Ln is the Lebesgue

measure, and not as the volume form dx1 ∧ · · · ∧ dxn. On R, instead, we usually think of
“dx” as a 1-form.

Forgetting the details, the punchline is that, on line integrals, we need to keep in mind
the indetities (15).

6. Spherical averages (or means)

Let X ⊂ Rm and Y ⊂ Rn be open sets. For u ∈ L1
loc(X × Y ), x ∈ X, y ∈ Y and r > 0

with B(y, r) ⊂ Y , define

(16)
φu(x, y; r) := −

∫
B(y,r)

u(x, z) dz = −
∫
BY (0,1)

u(x, y + rz) dz,

ψu(x, y; r) := −
∫
∂B(y,r)

u(x, z) dS(z) = −
∫
∂B(0,1)

u(x, y + rz) dS(z).

If u is continuous, it is clear that

(17) u(x, y) = lim
r→0

φu(x, y; r) = lim
r→0

ψu(x, y; r).

Lemma 6.1. If u ∈ Ca;b(X × Y ), with a, b ∈ N, then, for every ε > 0, φu, ψu ∈
Ca;b;bb/2c(X × Yε × (0, ε)), where Yε = {y ∈ Y : d(y, ∂Y ) > ε}.

Moreover, for all α ∈ Nm and β ∈ Nn, with |α| ≤ a and |β| ≤ b,
(18) Dα

xD
β
yφu = φ

DαxD
β
yu

and Dα
xD

β
yψu = ψ

DαxD
β
yu
.

and

(19)
∂rφu(x, y; r) =

n

r
(ψu(x, y; r)− φu(x, y; r)),

∂rψu(x, y; r) =
r

n
φ4yu(x, y; r)

(18)
=

r

n
4yφu(x, y; r).

Proof. Notice that both definitions of φu and ψu falls into the framework of Theorem 3.3,
which then implies (18). Moreover,

φu(x, y; r) =
1

αnrn

∫
B(y,r)

u(x, z) dz

=
1

αnrn

∫ r

0

∫
∂BY (y,s)

u(x, z) dS(z) ds
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= nr−n
∫ r

0

sn−1ψu(x, y; s) ds.

Therefore,

∂rφu(x, y; r) = −n2r−n−1

∫ r

0

sn−1ψ(x, y; s) ds+ nr−1ψu(x, y; r)

=
n

r
(−φu(x, y; r) + ψu(x, y; r)).

Finally,

∂rψu(x, y; r) =
1

nαn
∂r

∫
∂B(0,1)

u(x, y + rz) dS(z)

[by Theorem 3.3] =
1

nαn

∫
∂B(0,1)

(Dyu)(x, y + rz) · z dS(z)

[by Divergence Theorem and (20)] =
r

nαn

∫
B(0,1)

(4yu)(x, y + rz) dz

=
r

n
φ4yu(x, y; r),

where

(20) divz((Dyu)(x, y + rz)) = r(divy(Dyu))(x, y + rz) = r(4yu)(x, y + rz).

�

7. Change of coordinates

§7.1. Differential operator. Let Ω ⊂ Rn be open. A linear differential operator with
smooth coefficients on Ω is a map P : C∞(Ω)→ C∞(Ω) of the form

Pφ =
∑
α∈Nn

PαDαφ,

for some Pα ∈ C∞(Ω), all zero but for finitely many indices.

§7.2. An abstract overview. Let Ω1,Ω2 ⊂ Rn be open sets and Φ : Ω1 → Ω2 a
diffeomorphism. We have pull-backs and push-forwards of both functions and differential
operators:

• Pull-back of functions: Φ∗ : C∞(Ω2)→ C∞(Ω1), Φ∗ψ = ψ ◦ Φ for ψ ∈ C∞(Ω2);
• Push-forward of functions: Φ∗ : C∞(Ω1) → C∞(Ω2), Φ∗φ = φ ◦ Φ−1 for ψ ∈
C∞(Ω2);

• Push-forward of differential operators: if P1 : C∞(Ω1)→ C∞(Ω1) is a differential
operator, then Φ∗P1 = Φ∗ ◦ P1 ◦ Φ∗;

• Pull-back of differential operators: if P2 : C∞(Ω2) → C∞(Ω2) is a differential
operator, then Φ∗P2 = Φ∗ ◦ P2 ◦ Φ∗.

The following diagrams might help:

Ω1
Φ // Ω2

C∞(Ω1)

P1

��

C∞(Ω2)
Φ∗oo

Φ∗P1

��
C∞(Ω1)

Φ∗ // C∞(Ω2)

Ω1
Φ // Ω2

C∞(Ω1)

Φ∗P2

��

Φ∗ // C∞(Ω2)

P2

��
C∞(Ω1) C∞(Ω2)

Φ∗oo

Notice that, for all functions φ ∈ C∞(Ω1), ψ ∈ C∞(Ω2), and all differential operators
P1 : C∞(Ω1)→ C∞(Ω1) and P2 : C∞(Ω2)→ C∞(Ω2),

Φ∗φ = (Φ−1)∗φ = (Φ∗)−1φ;

(Φ∗P1)ψ = (P1(φ ◦ Φ)) ◦ Φ−1;

(Φ∗P2)φ = (P2(φ ◦ Φ−1)) ◦ Φ;

Φ∗Φ
∗ = Id, and Φ∗Φ∗ = Id.
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Notice that, if Pj , Qj are differential operators, then

(21) Φ∗(P2 ◦Q2) = (Φ∗P2) ◦ (Φ∗Q2), and Φ∗(P1 ◦Q1) = (Φ∗P1) ◦ (Φ∗Q1).

Exercise 7.1. A differential operator of order zero on Ω is of the form Pφ = f · φ for
some f ∈ C∞(Ω). Compute Φ∗P and Φ∗P for differential operators P of order zero. Is it
coherent with pull-back and push-forward of functions? ♦

Exercise 7.2. Let Φ : Ω1 → Ω2 be a diffeomorphism between open subsets of Rn. For
j ∈ {1, . . . , n}, compute Φ∗∂j and Φ∗∂j . ♦

Exercise 7.3 (Harder). Consider Φ : Rn → Rn, Φ(x) = Ax for A ∈ GL(Rn), that is A is
a n× n invertible matrix. For α ∈ Nn, compute Φ∗Dα and Φ∗D

α. ♦

§7.3. An example: Laplacian in polar coordinates. Consider

Φ : (0,+∞)× (−π, π)→ R2 \ ({0} × [−∞, 0]), Φ(r, θ) = (r cos(θ), r sin(θ)).

This function Φ is a polar parametrization of the plane: polar coordinates are in fact the
inverse function of Φ. In other words, we can define functions

(22) r, θ : R2 \ ({0} × [−∞, 0])→ R, such that Φ(r(x, y), θ(x, y)) = (x, y).

Anyway, with the function Φ above, we want to compute Φ∗4. To do this, using
Exercise 7.2, we first compute

DΦ(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
, DΦ(r, θ)−1 =

1

r

(
r cos θ r sin θ
− sin θ cos θ

)
.

Therefore,

(Φ∗∂x)(r, θ) = DΦ(r, θ)−1 (∂x|Φ(r,θ)

)
= cos θ∂r − sin θ

r
∂θ

(Φ∗∂y)(r, θ) = DΦ(r, θ)−1 (∂y|Φ(r,θ)

)
= sin θ∂r +

cos θ

∂r
.

Using now (21), we obtain

(23) Φ∗4 = (Φ∗∂x)2 + (Φ∗∂y)2 = [...] = ∂2
r +

1

r2
∂2
θ +

1

r
∂r.

This formula represents “the laplacian in polar coordinates”.

§7.4. Another interpretation of the previous change of variables. We have an-
other interpretation of the computation we made in (23). Define the vector fields

~vr(x, y) = cos θ∂x + sin θ∂y =
x∂x − y∂y√
x2 + y2

,

~vθ(x, y) = r sin θ∂r + r cos θ∂y = −y∂x + x∂y,

where we see θ and r as the functions defined in (22). These are the push-forward vector
fields Φ∗∂r and Φ∗∂θ, respectively. As such, one usually simply writes ∂r and ∂θ for ~vr
and ~vθ. We keep the distinction here for purely educational purposes.

At this point, we can write ∂x and ∂y in terms of ~vr and ~vθ:

∂x = cos θ~vr − sin θ

r
~vθ,

∂y = sin θ~vr +
cos θ

r
~vθ.

We can now perform the computation (23) again as

4 = ∂2
x + ∂2

y = (cos θ~vr − sin θ

r
~vθ)

2 + (sin θ~vr +
cos θ

r
~vθ)

2 = [...] = ~v2
r +

1

r2
~v2
θ +

1

r
~vr,

where, we recall, r, θ are the functions defined in (22), and “~vr = ∂r”, and “~vθ = ∂θ”.
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§7.5. Exercise: Laplacian in polar coordinates in arbitrary dimension.

Exercise 7.4. Consider the polar coordinates in Rn given by the function Φ : (0,+∞)×
Rn−1 → Rn,

Φ(r, θ1, . . . , θn−1) = r(cos θ1, sin θ1 cos θ2, sin θ1 sin θ2 cos θ3, . . . , sin θ1 · · · sin θn−1).

(1) Determine domain and image of Φ so that it becomes a diffeomorphism;
(2) Compute the laplacian in polar coordinates in Rn.

♦

8. Mollifiers

Let ρ ∈ C∞c (Rn) be such that spt(ρ) = B(0, 1), 0 ≤ ρ ≤ 1, ρ(−x) = ρ(x) for all x, and∫
ρ dx = 1. Define ρε(x) = ρ(x/ε)/εn. We call the family {ρε}ε>0 an approximation of the

identity on Rn, or a family of mollifiers.
For example, one can take

(24) ρ(x) =

{
k exp

(
1

|x|2−1

)
if |x| < 1

0 otherwise,

where k normalizes the integral. The family of mollifiers given by the function ρ in (24)
is called standard family of mollifiers.

Exercise 8.1. Show that the function

ρ0(x) =

{
exp

(
1

|x|2−1

)
if |x| < 1

0 otherwise,

is C∞-smooth on Rn and compute
∫ n
R ρ0(x) dx. Show also that ρ0 is not analytic. Does

it exist a family of analytic mollifiers? ♦

TODOPROPRIETA’ DEI MOLLIFICATORI.

Proposition 8.2. u ∗ ρε ∈ C∞ TODO
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Part 1. Four classical PDE

9. Transport Equation

This is [5, Section 2.1]. The transport equation is the initial value problem

(25)

{
∂tu+ b · ∇u = f on Rn × I,
u = g on Rn × {t0},

where I ⊂ R is an interval, t0 ∈ I, b ∈ Rn, f : Rn × I → C and g : Rn → C. The function
u is intended as a function in two variables, u = u(x, t), where x ∈ Rn and t ∈ I. The
derivative ∂tu is the derivative along the second variable, t, while the gradient ∇u is the
derivative of u in the variable x.

If f = 0, then we call (25) the homogeneous transport equation. If f 6= 0, then (25) is
the nonhomogeneous transport equation.

A solution to (25) is easily found.

Theorem 9.1. Let I ⊂ R be an open interval, t0 ∈ Ī, b ∈ Rn, f ∈ C0(Rn × Ī), and
g ∈ C1(Rn). Then the function u ∈ C1(Rn × Ī) defined by

(26) u(x, t) = g(x− (t− t0)b) +

∫ t

t0

f(x+ (r − t)b, r) dr

is the unique solution to (25).

Proof. To show that u is a solution to (25), we just compute the derivatives:

∂tu(x, t) = −∇g(x− (t− t0)b) · b+ f(x, t)−
∫ t

t0

∇f(x+ (r − t)b, r) · b dr,

∇u(x, t) = ∇g(x− (t− t0)b) +

∫ t

t0

∇f(x+ (r − t)b, r) dr.

It follows that u solves (25).
To show that u is unique, suppose that ũ ∈ C1(Rn × Ī) is another solution. Then the

difference w := u− ũ solves (25) with f = 0 and g = 0. Notice that
d

ds
w(x+ sb, t+ s) = ∇w(x+ sb, t+ s) · b+ ∂tw(x+ sb, t+ s) = 0

Therefore, for all (x, t) ∈ Rn × I, we have w(x, t) = w(x+ (t0 − t)b, t0) = 0. �

Remark 9.2. The function u defined in (26) is well defined even in the case g is not
smooth. In some sense, these other functions could be regarded as weak solutions to (25)
when g is not C1.
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10. Laplace Equation

§10.1. Laplace operator. For U ⊂ Rn open and u ∈ C2(U), define the laplacian of u
as

4u := div(∇u)) =

n∑
j=1

∂2u

∂x2
j

.

The operator 4 :=
∑n
j=1 ∂

2
j is the Laplace operator.

§10.2. Harmonic function. A harmonic function on U ⊂ Rn open is a function u ∈
C2(U) such that 4u = 0.

Exercise 10.1. Show that the only harmonic functions on R are the affine functions. ♦

§10.3. Symmetries of Laplace operator. Let U ⊂ Rn open, u ∈ C2(U), O ∈ O(n),
b ∈ Rn, and λ ∈ R \ {0}. Define ū(y) := u(λOy + b). Then ū ∈ C2(λ−1O−1(U − b)) and

4ū(y) = λ2(4u)(λOy + b).

§10.4. How to find the fundamental solution: radial solutions. In this section we
solve the following Exercise 10.2, which asks to find radial harmonic functions on Rn:

Exercise 10.2. For n ≥ 2, find smooth non-constant functions u : Rn \ {0} → C that are
radial, that is, they only depend on the distance from the origin, and harmonic, that is,
4u = 0. ♦

In what follows, we solve Exercise 10.2. The reader is invited to solve it first by
themselves: it is actually easier than it looks like at first.

Such radial harmonic functions are expected to exist because of the symmetries of
the laplacian that we have seen in the previous Section §10.3: since the laplacian has
spherical symmetry, we expect to have harmonic functions with spherical symmetry. We
expect these functions to be somehow special: they are indeed, and we will see in the
forthcoming sections that among them we find fundamental solutions of the laplacian.

Another type of symmetric harmonic functions are those that are homogeneous with
respect to dilations. I invite the student to try to characterize those too: they are the
so-called spherical harmonics...

Done with Exercise 10.2? Here is my take.
We consider functions of the form u(x) = φ(|x|2), with φ : (0,+∞) → C smooth. I

choose to take the squared norm because in this way derivatives are easier. The we have
∂u

∂xj
(x) = φ′(|x|2)2xj ;

∂2u

∂x2
j

(x) = φ′′(|x|2)4x2
j + φ′(|x|2)2;

4u(x) = 4φ′′(|x|2) |x|2 + 2nφ′(|x|2).

Since we want 4u(x) = 0 for x 6= 0, we obtain that φ must satisfy

(27) ∀t ∈ (0,+∞), 4φ′′(t)t+ 2nφ′(t) = 0.

Take ψ = φ′: then ψ must satisfy

(28) ∀t ∈ (0,+∞),
ψ′(t)

ψ(t)
= −n

2

1

t
.

We are assuming ψ(t) = φ′(t) 6= 0 for all t > 0, because if φ′(t) = 0 for some t, then φ
constant, i.e., φ′ ≡ 0, is a solution to the ODE (27). Since this ODE has unique solution
given φ′ at one point, we conclude that either φ is constant or φ′ is never zero. So, ψ does
satisfy (28).

The ODE (28) is equivalent to

∀t ∈ (0,+∞),
d

dt
log(ψ(t)) = −n

2

d

dt
log(t),
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Figure 1. Plots of |x| 7→ Φ(x) (left) and of R 7→
∫
B(0,R)

Φ(x) dx (right)
for n = 2, 3.

which is in turn equivalent to

∃c ∈ C, ∀t ∈ (0,+∞), log(ψ(t)) = −n
2

log(t) + c.

Exponentiating and integrating, we obtain that non-constant solutions of (27) are

∃a, c ∈ C ∀t ∈ (0,+∞), φ(t) = a+ ec
∫ t

1

s−
n
2 ds.

Here we need to distinguish tow cases:

n = 2 : φ(t) = a+ ec log(t),

n > 2 : φ(t) =

(
a− 2ec

2− n

)
+

2ec

2− nt
2−n

2 .

This might be pedantic, but we have shown that all functions required by Exercise 10.2
are all functions of the form

n = 2 : u(x) = a+ b log(|x|),

n > 2 : u(x) = a+
b

|x|n−2 ,

for every choice of a, b ∈ C.

§10.5. Fundamental solution of the Laplace’s equation. Define Φ : Rn \ {0} → R
by

(29) Φ(x) =

{
− 1

2π
log(|x|) if n = 2,

1
n(n−2)ωn

1
|x|n−2 if n ≥ 3,

where ωn is the volume of the unit ball in Rn. We will call this function Φ the Fundamental
solution of the Laplace’s equation. The most important property of this function is its role
in Theorem §10.6. In fact, we will see fundamental solutions of linear operators from an
abstract viewpoint in Section §13.33.

Proposition 10.3 (Properties of the fundamental solution). Let n ≥ 2. The fundamental
solution Φ : Rn \ {0} → R of Laplace’s equation, defined in (29), satisfies the following
statements.

(1) Φ is an analytic function Rn \ {0} → R. If n ≥ 3, then Φ is strictly positive
valued.

(2) For every x ∈ Rn \ {0},

(30) ∇Φ(x) = − 1

nωn

x

|x|n .

(3) For every x ∈ Rn \ {0},

(31) D2Φ(x) =
1

ωn

x⊗ x
|x|n+2

− 1

nωn

Id

|x|n .
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(4) 4Φ = 0 on Rn \ {0}.
(5) There exists C > 0 such that for every x ∈ Rn \ {0}:

(a) 0 < Φ(x) ≤ C|x|2−n if n ≥ 3;
(b)

∣∣∣ ∂Φ
∂xj

(x)
∣∣∣ ≤ C

|x|n−1 , for all j ∈ {1, . . . , n};
(c)

∣∣∣ ∂2Φ
∂xj∂xk

(x)
∣∣∣ ≤ C

|x|n , for all j, k ∈ {1, . . . , n}.
(6) Φ ∈ L1

loc(Rn) with

(32)
∫
B(0,R)

Φ(x) dx =

{
R2

4
(1− 2 log(R)) if n = 2,
R2

2(n−2)
if n ≥ 3.

See Figure §10.4 for a plot of these quantities.

Proof. Part 1 is clear.
Statement 2 is proven as follows. If n = 2 and x ∈ R2 \ {0}, then

(33) ∇Φ(x) = − 1

2π

1

|x|
x

|x| = − 1

2π

x

|x|2 .

Therefore, |∇Φ(x)| = 1
2π

1
|x| .

If n ≥ 3 and x ∈ Rn \ {0}, then

(34) ∇Φ(x) =
1

n(n− 2)ωn
(2− n)|x|2−n−1 x

|x| = − 1

nωn

x

|x|n .

Therefore, |∇Φ(x)| = 1
nωn

1
|x|n−1 . Notice that (33) and (34) are summarized in (30),

because α(2) = π.
For 3, we compute

D2Φ(x) = − 1

nωn

(
Id

|x|n + x⊗
(
−n|x|−n−1 x

|x|

))
= − 1

nωn

Id

|x|n +
1

ωn

x⊗ x
|x|n+2

.

In other words,

∂2Φ

∂xj∂xk
(x) =

∂

∂xj

(
− 1

nωn

xk
|x|n

)
= − 1

nωn

(
δjk
|x|n − xkn|x|

−n−1 1

2
(
∑
`

x2
`)

1/22xk

)

= − 1

nωn

δjk
|x|n +

1

ωn

xkxj
|x|n+2

.

So, we have (31).
Statement 4 is now an easy computation: if x ∈ Rn \ {0}, then

4Φ(x) = trace(D2Φ(x))

=
1

ωn

trace(x⊗ x)

|x|n+2
− 1

nωn

trace(Id)

|x|n

=
1

ωn

1

|x|n −
1

nωn

n

|x|n = 0.

The estimates 5 are a consequence of the explicit formulas we have computed.
The last two formulas stated in part 6 are simply computed as follows. For n = 2, we

have ∫
B(0,R)

Φ(x) dx = − 1

2π

∫ R

0

∫ 2π

0

log(r)r dθ dr

= −
∫ R

0

log(r)r dr

[Integration by parts] = −
(

log(r)
r2

2

∣∣∣∣R
0

+

∫ R

0

1

r

r2

2
dr
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= − log(R)
R2

2
+

1

2

R2

2
=
R2

4
(1− 2 log(R)).

For n ≥ 3, we have∫
B(0,R)

Φ(x) dx =
1

n(n− 2)ωn

∫
B(0,R)

1

|x|n−2
dx

=
1

n(n− 2)ωn

∫ R

0

∫
∂B(0,1)

1

|x|n−2
dSn−1(x)rn−1 dr

=
nωn

n(n− 2)ωn

∫ R

0

r dr

=
1

(n− 2)

R2

2
.

�

§10.6. Solution to Poisson equation.

Theorem 10.4 (Solution to Poisson equation). Let f ∈ C2
c (Rn) and define for x ∈ Rn

(35) u(x) =

∫
Rn

Φ(y)f(x− y) dy =

∫
Rn

Φ(x− y)f(y) dx.

Then u ∈ C2(Rn) and

(36) −4u = f in Rn.

Proof. Recall that, since Φ ∈ L1
loc(Rn) by Proposition 10.3.6, and since f is continuous

with bounded support, then, for every x ∈ Rn, the integrand y 7→ Φ(y)f(x − y) is inte-
grable. It follows that u is well defined and that the identity between the second and the
third expressions in (35) is a simple change of variables.

We need now to prove the regularity of u. For x, y ∈ Rn, define
Kf (x, y) = Φ(y)f(x− y).

Fix R > 0 and set X = B(0, R). Let S > 0 be such that spt(f) ⊂ B(0, S): then, for every
x ∈ X,

|Kf (x, y)| ≤ ‖f‖L∞ · Φ(y) · 1B(0,R+S)(y).

Notice that the function gf : y 7→ ‖f‖L∞ · Φ(y) · 1B(0,R+S)(y) is integrable over Rn. By
Theorem 3.3, the function u is continuous on X. Moreover, since

Dα
xKf = KDαf ,

then, again by Theorem 3.3, u ∈ C2(X). Since this holds for every R > 0, we conclude
that u ∈ C2(Rn).

We have also obtained that, always from Theorem 3.3, for ever α ∈ Nn with |α| ≤ 2,

Dαu(x) =

∫
Rn

Φ(y)(Dαf)(x− y) dy.

We conclude that
4u(x) =

∫
Rn

Φ(y)(4f)(x− y) dy.

We need to compute the latter integral.
For ε > 0, we set

4u(x) =

∫
B(0,ε)

Φ(y)(4f)(x− y) dy︸ ︷︷ ︸
Iε

+

∫
Rn\B(0,ε)

Φ(y)(4f)(x− y) dy︸ ︷︷ ︸
Jε

.

From (32) we obtain that, if ε < 1/2, there is C > 0 (depending on n) such that

|Iε| ≤ ‖4f‖L∞
∫
B(0,ε)

|Φ(y)| dy ≤
{
C‖4f‖L∞ε2| log(ε)| if n = 2,

C‖4f‖L∞ε2 if n ≥ 3.

In both cases, we have

lim
ε→0

Iε = 0.
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For Jε, we compute

Jε =

∫
Rn\B(0,ε)

Φ(y)(4f)(x− y) dy

=

∫
Rn\B(0,ε)

Φ(y)4y(f(x− y)) dy

(7)
=

∫
Rn\B(0,ε)

divy(Φ(y)∇yf(x− y)) dy −
∫
Rn\B(0,ε)

∇yΦ(y) · ∇yf(x− y) dy

(7)
=

∫
Rn\B(0,ε)

divy(Φ(y)∇yf(x− y)) dy +

∫
Rn\B(0,ε)

divy(∇yΦ(y)) · f(x− y) dy

−
∫
Rn\B(0,ε)

divy(f(x− y)∇yΦ(y)) dy

10.3.4
=

∫
Rn\B(0,ε)

divy(Φ(y)∇yf(x− y)) dy −
∫
Rn\B(0,ε)

divy(f(x− y)∇yΦ(y)) dy

(6)
= −

∫
∂B(0,ε)

Φ(y)∇yf(x− y) · y|y| dS
n−1(y)︸ ︷︷ ︸

Lε

+

∫
∂B(0,ε)

f(x− y)∇yΦ(y) · y|y| dS
n−1(y)︸ ︷︷ ︸

Kε

.

We then have that, for ε < 1/2, there is C > 0 (depending on n) such that

|Lε| ≤ ‖∇f‖L∞
∫
∂B(0,ε)

Φ(y) dSn−1(y)

≤
{
C‖∇f‖L∞ | log(ε)|ε if n = 2,

C‖∇f‖L∞ε if n ≥ 3.

In both cases, we have

lim
ε→0

Lε = 0.

The remaining quantity is

Kε =

∫
∂B(0,ε)

f(x− y)∇yΦ(y) · y|y| dS
n−1(y)

= − 1

nωn

∫
∂B(0,ε)

f(x− y)
y

|y|n ·
y

|y| dS
n−1(y)

= − 1

nωn

∫
∂B(0,ε)

f(x− y)|y|2−n−1 dSn−1(y)

= − 1

nωnεn−1

∫
∂B(0,ε)

f(x− y) dSn−1(y)

= −−
∫
∂B(0,ε)

f(x− y) dS(y).

We conclude that

(37) lim
ε→0

Kε = −f(x).

We conclude that (36) holds. �

From the proof of the above Theorem 10.4, we obtain the following corollary

Corollary 10.5 (Fundamental property of the fundamental solution). Let U ⊂ Rn open
and f ∈ C0(U). For every x ∈ U ,

lim
ε→0

∫
∂B(x,ε)

f(y)∇yΦ(x− y) · y − x|y − x| dS(y) = −f(x);

or, equivalentely,

lim
ε→0

∫
∂B(0,ε)

f(x− y)∇yΦ(y) · y|y| dS(y) = −f(x).

Proof. See (37). �
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Remark 10.6. (1) We are inverting the Laplacian, in some sense.
(2) If φ ∈ C2(Rn) is harmonic (e.g., a harmonic polynomial), then 4(u+ φ) = 4u =

f . So, the above integral formula (35) selects one solution among many.
(3) Our integral formula is only solving 4u = f on the whole space Rn and only for f

with compact support. There are various direction in which to extend this result:
to f continuous (in fact, f of class C2 looks weird: if u ∈ C2, then we expect
f = 4u ∈ C0) [see §13.34]; to f not with compact support (in fact, the selected
u does not have compact support anyway); to the case of f defined only on an
open subset U [see §10.17]. I hope we can see all these extensions in this course:
we will check!

Exercise 10.7. Using the ideas in the proof of Theorem 10.4, prove the following state-
ment: If u ∈ C2(Rn) is such that 4u ∈ C0

c (Rn), then, for every x ∈ Rn,

u(x) = −
∫
Rn

Φ(x− y)4u(y) dy.

Can you weaken the condition “4u ∈ C0
c (Rn)”?

Hint. Look also at Theorem 10.39. ♦

§10.7. Mean value property. See Section 6 first.

Theorem 10.8 (Mean value property for harmonic functions). Let U ⊂ Rn be open and
u ∈ C2(U). The following statements are equivalent:

(i) u is harmonic, i.e., 4u = 0;
(ii) ∀x ∈ U , ∀r > 0, such that B̄(x, r) ⊂ U ,

u(x) = −
∫
∂B(x,r)

u(y) dS(y).

(iii) ∀x ∈ U , ∀r > 0, such that B̄(x, r) ⊂ U ,

u(x) = −
∫
B(x,r)

u(y) dy.

Proof. As in (16), we set

φu(x; r) := −
∫
B(x,r)

u(z) dz, and ψu(x; r) := −
∫
∂B(x,r)

u(z) dS(z).

Then, from (19) we have,

∂rφu(x; r) =
n

r
(ψu(x; r)− φu(x; r)),(38)

∂rψu(x; r) =
r

n
φ4xu(x; r).(39)

(i)⇒ (ii): By (39), if 4u = 0, then ∂rψu = 0, i.e., r 7→ ψu(x; r) is constant and, since
B(x, r) ⊂ U , we have

u(x)
(17)
= lim

ε→0
ψu(x; ε) = ψu(x; r).

(ii)⇒ (iii): Let x ∈ U and r > 0 be such that B̄(x, r) ⊂ U . Then

−
∫
B(x,r)

u(y) dy =
1

rnωn

∫ r

0

∫
∂B(x,s)

u(y) dS(y) dr

=
n

rn

∫ r

0

−
∫
∂B(x,s)

u(y) dS(y)sn−1 dr

(ii)
= u(x)

n

rn

∫ r

0

sn−1 dr = u(x).

(iii)⇒ (ii): Let x ∈ U and r > 0 be such that B̄(x, r) ⊂ U . From (38), we obtain,

0 = ∂rφu(x; r) =
n

r
(ψu(x; r)− u(x)),

i.e., ψu(x; r) = u(x).
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(ii)⇒ (i): Let x ∈ U . From (39), we have

4u(x)
(17)
= lim

r→0
φ4u(x; r)

(39)
= lim

r→0

n

r
∂rψu(x; r)

(ii)
= 0.

�

Remark 10.9. If ∂B(x, r) ⊂ U but B(x, r) 6⊂ U , then the mean value formula does not
need to hold. Find an example.

Exercise 10.10. For all n ≥ 2, compute

ψΦ(0; r) := −
∫
∂B(0,r)

Φ(y) dS(y),

where Φ is the fundamental solution of the Laplace equation. Is r 7→ ψΦ(0; r) constant?
♦

Exercise 10.11. In the proof of Theorem 10.8, we have shown (ii)⇒ (i). Give a direct
proof of (iii)⇒ (i). ♦

Exercise 10.12. Show the equivalence (iii)⇔ (ii) assuming only u ∈ C0(U). ♦

§10.8. Strong maximum principle.

Theorem 10.13 (Strong maximum principle - First version). Suppose U ⊂ Rn is open and
connected, and u ∈ C2(U ;R) is harmonic. If there exists x ∈ U is such that u(x) = supU u,
then u is constant.

Proof. Define

M = sup
U
u and W = {x ∈ U : u(x) = M} = u−1({M}).

Since u is continuous, then W is closed in U .
We claim thatW is open. If x ∈W , then there is r > 0 such that B(x, r) ⊂ U , because

U is open. Therefore, since u is harmonic, by Theorem 10.8 we have

M = u(x)
10.8.(iii)

= −
∫
B(x,r)

u(y) dy
(∗)
≤ M

where the inequality (∗) is strict1 unless u(y) = M for all y ∈ B(x, r). It follows that
B(x, r) ⊂W .

In conclusion, since U is connected and W ⊂ U is both open and closed, then W ∈
{∅, U}. If W is not empty, then W = U , i.e., u is constant. �

Exercise 10.14. Show that, if u ∈ C0(B(0, r);R) is such that u ≤ M on B(0, r), then
−
∫
B(x,r)

u(y) dy ≤M , with equality if and only if u = M on B(0, r). ♦

Theorem 10.15 (Strong maximum principle - Second version). Suppose U ⊂ Rn is open
and bounded, and u ∈ C2(U ;R) ∩ C0(Ū ;R) is harmonic. Then

max
Ū

u = max
∂U

u.

Proof. We clearly have maxŪ u ≥ max∂U u. Suppose that there exists x ∈ U with u(x) =
maxŪ u. We need to show that there is also a point on ∂U with the same value. Let
C ⊂ U be the connected component of U containing x. Since C is open and connected,
by Theorem 10.13, u is constant on C. Therefore, if y ∈ ∂C, then u(y) = u(x) = maxŪ u.
Since Rn is locally connected, then ∂C ⊂ ∂U (see Exercise 10.16). Therefore,

max
Ū

u = u(x) = max
∂C

u ≤ max
∂U

u.

�

1Indeed, if |B(x, r) \W | > 0, then

−
∫
B(x,r)

u(y) dy =
1

|B(x, r)|

(∫
B(x,r)∩W

u(y) dy +

∫
B(x,r)\W

u(y) dy

)

<
1

|B(x, r)|
(M |B(x, r) ∩W |+M |B(x, r) \W |) = M.
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Exercise 10.16. Show the following statement: Let X be a locally connected topological
space and U ⊂ X open. Let C ⊂ U be a connected component of U . Then ∂C ⊂ ∂U .

After this, show that the hypothesis of X being locally connected is necessary. In other
words, find an example of a topological space X that is not locally connected, and U ⊂ X
open that has a connected component C ⊂ U with ∂C ∩ ∂U = ∅. ♦

Solution to Exercise 10.16. Let x ∈ ∂C. Then x ∈ Ū . If x ∈ U , then there exists a
connected neighborhood V of x with V ⊂ U . Since x ∈ ∂C, then V ∩ C 6= ∅. We then
have C ∪ V ⊂ U is connected. Since C is a maximal connected subset of U , we conclude
V ⊂ C, in contradiction with x ∈ ∂C. �

Exercise 10.17. State and prove the Strong Minimum Principle for harmonic functions,
both in the first and second versions. ♦

Exercise 10.18. Show the strong maximum and minimum principles for harmonic func-
tions without using the mean value property, i.e., explicitly using that 4u = 0.

Hint: First consider u ∈ C2(U ;R) with 4u > 0 in U . Suppose x ∈ U is such that
u(x) = maxU u. Then t = 0 is a point of maximum for t 7→ u(x + tej), for each j ∈
{1, . . . , n}. Therefore ∂2u

∂x2
j

(x) = d2

dt2

∣∣∣
t=0

u(x+ tej) ≤ 0. ♦

Remark 10.19. In Theorem 10.15, we actually prove more than what we claim. In fact,
do not need “u ∈ C2(U ;R) ∩ C0(Ū ;R) harmonic”, but only u ∈ C0(Ū ;R) satisfying the
mean value property, as stated in Theorem 10.8.(ii). See also Exercise 10.12. Maybe, in
your personal notes you can rewrite these statements in the more general form.

§10.9. Subharmonic functions.

Exercise 10.20. Let U ⊂ Rn open. A function u ∈ C2(U) is subharmonic if and only
if 4u ≥ 0 on U . A function u ∈ C2(U) is superharmonic if and only if 4u ≤ 0 on U .
(Notice the inversion between “sub” and “≥”).

State and prove modified versions of Theorem 10.8 and Theorem 10.13 for subharmonic
functions.

After this, do the same for superharmonic functions. ♦

§10.10. Monotonicity of Laplace’s boundary value problem.

Corollary 10.21. Let U ⊂ Rn open, bounded and connected. Let u ∈ C2(U ;R)∩C0(Ū ;R)
and g ∈ C0(∂U ;R) be such that {

4u = 0 in U,
u = g on U.

If g is not constant and g ≥ 0 on ∂U , then u > 0 on U .

Exercise 10.22. Write a proof of Corollary 10.21. ♦

Exercise 10.23. Write and prove a version of Corollar 10.21 for sub- and superharmonic
functions. ♦

§10.11. Uniqueness for the Poisson equation.

Theorem 10.24 (Uniqueness for the Poisson equation). Let U ⊂ Rn be open and bounded,
f ∈ C0(U) and g ∈ C0(∂U).

There exists at most one solution in C2(U) ∩ C0(Ū) to the boundary value problem

(40)

{
−4u = f in U,
u = g on U.

Proof. Suppose u1, u2 ∈ C2(U) ∩ C0(Ū) are solutions to (40). Then if u is the real or
imaginary part of u1 − u2, then u ∈ C2(U ;R) ∩ C0(Ū ;R) and u solves{

4u = 0 in U,
u = 0 on U.

Apply the maximum principle Theorem 10.15 and the minimum principle (or the maximum
principle to −u), to conclude that u = 0 on U . Therefore, u1 = u2. �
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§10.12. Smoothness of harmonic functions.

Theorem 10.25. Let U ⊂ Rn be open and u ∈ C0(U). Suppose that u satisfies the
spherical mean-value property, i.e.,

(41) ∀x ∈ U ∀r > 0 s.t. B̄(x, r) ⊂ U : u(x) = −
∫
∂B(x,r)

u(y) dS(y).

Then u ∈ C∞(U).

Proof. Let {ηε}ε>0 be the family of standard mollifiers. Recall that ηε(x) = η̃(|x|/ε)/εn for
a compactly supported function η̃ ∈ C∞(R) with η̃ ≥ 0, spt(η̃) ⊂ [−1, 1], and

∫
R η̃(t) dt =

1. In particular, it follows that spt(ηε) ⊂ B̄(0, ε) and
∫
Rn ηε(x) dx = 1.

We will show that the spherical mean-value property (41) implies that, for every ε > 0,
u ∗ ηε = u on

Uε = {x ∈ U : dist(x, ∂U) > ε}.
Since u ∗ ηε ∈ C∞(Uε) by Proposition 8.2, we will conclude u ∈ C∞(U).

So, if x ∈ Uε, then

u ∗ ηε(x) =

∫
B(x,ε)

u(y)ηε(x− y) dy

=

∫ ε

0

∫
∂B(x,r)

u(y)ηε(x− y) dS(y) dr

=

∫ ε

0

η̃ε(r)

(∫
∂B(x,r)

dS(y)

)
−
∫
∂B(x,r)

u(y) dS(y) dr

(41)
= u(x)

∫ ε

0

η̃ε(r)

∫
∂B(x,r)

dS(y) dr

= u(x)

∫ ∞
0

∫
∂B(x,r)

ηε(x− y) dS(y) dr

= u(x)

∫
Rn
ηε(x− y) dy = u(x).

�

Corollary 10.26. Harmonic functions are C∞ smooth.

§10.13. Analyticity of harmonic functions.

Proposition 10.27 (Estimates on derivatives of harmonic functions). Let U ⊂ Rn open
and u ∈ C∞(U) harmonic. For every x ∈ U and r > 0 with B(x, r) ⊂ U , and for every
α ∈ Nn with |α| = k we have

(42) |Dαu(x)| ≤ Ck
rn+k

‖u‖L1(B(x,r)), where
C0 = 1

ωn
, and

Ck = (2n+1nk)k

ωn
for k ≥ 1.

The proof of Proposition 10.27 will come after a few lemmas.

Lemma 10.28 (Derivative of harmonic functions). Every partial derivative of a harmonic
function is harmonic.

Proof. Let U ⊂ Rn open and u ∈ C∞(U) harmonic. If j ∈ {1, . . . , n}, then

4(∂ju) =

n∑
k=1

∂2
k∂ju = ∂j

n∑
k=1

∂2
ku = ∂j4u = 0,

because ∂j∂k = ∂k∂j for all j, k. So, all first-order derivatives of u are harmonic. Iterating,
all derivatives of harmonic functions are harmonic harmonic functions. �

Lemma 10.29 (Case k = 0). Let U ⊂ Rn open and u ∈ C∞(U) harmonic. For every
x ∈ U and r > 0 with B(x, r) ⊂ U ,

(43) |u(x)| ≤ 1

ωnrn
‖u‖L1(B(x,r)).
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Proof. The ball mean-value property for harmonic functions gives

|u(x)| =
∣∣∣∣∣−
∫
B(x,r)

u(y) dy

∣∣∣∣∣ ≤ 1

ωnrn
‖u‖L1(B(x,r)).

�

Lemma 10.30 (Case k = 1: Estimate of first derivatives of harmonic functions). Let
U ⊂ Rn open and u ∈ C∞(U) harmonic. For every x ∈ U and r > 0 with B(x, r) ⊂ U ,
and for every j ∈ {1, . . . , n} and θ ∈ (0, 1), we have

(44) |∂ju(x)| ≤ 1

ωn(θr)n

∫
∂B(x,θr)

|u(y)| dS(y).

As a consequence, we also have

(45) |∂ju(x)| ≤ 2n+1n

ωn

1

rn+1
‖u‖L1(B(x,r)).

Proof. Fix j ∈ {1, . . . , n}. By Lemma 10.28, ∂ju is also harmonic, and thus it has the
mean-value property. Therefore, for every θ ∈ (0, 1),

|∂ju(x)| =
∣∣∣∣∣−
∫
B(x,θr)

∂ju(y) dy

∣∣∣∣∣
=

1

ωn(θr)n

∣∣∣∣∣
∫
B(x,θr)

div(uej)(y) dy

∣∣∣∣∣
=

1

ωn(θr)n

∣∣∣∣∣
∫
∂B(x,θr)

u(y)ej · y − x|y − x| dS(y)

∣∣∣∣∣
≤ 1

ωn(θr)n

∫
∂B(x,θr)

|u(y)|dS(y).

This shows (44). Next, we use the fact that, if y ∈ ∂B(x, θr), then B(y, (1−θ)r) ⊂ B(x, r).
Thus, applying Lemma 10.29 to the running estimates, we get

|∂ju(x)| ≤ 1

ωn(θr)n

∫
∂B(x,θr)

|u(y)|dS(y)

(43)
≤ 1

ωn(θr)n

∫
∂B(x,θr)

1

ωn((1− θ)r)n ‖u‖L1(B(y,(1−θ)r)) dS(y)

≤ 1

ωn(θr)n
1

ωn((1− θ)r)n nωn(θr)n−1‖u‖L1(B(x,r))

=
n

ωnθ(1− θ)nrn+1
‖u‖L1(B(x,r))

All in all, if we take θ = 1/2, we have (45). �

Proof of Proposition 10.27. We shall argue by induction over k.
For k = 0 and k = 1, we have already Lemma 10.29 and Lemma 10.30, respectively.
Let m ≥ 1 and assume that (42) holds for all k ≤ m. We now prove (42) for k = m+1.

Let α ∈ Nn with |α| = m+ 1. Then there is β ∈ Nn with |β| = m and j ∈ {1, . . . , n} such
that Dα = Dβ ∂

∂xj
.

The function Dβu is harmonic by Lemma 10.28. We apply Lemma 10.30 to the function
Dβu and get that, for θ ∈ (0, 1),

|Dαu(x)| = |∂jDβu(x)|
(44)
≤ 1

ωn(θr)n

∫
∂B(x,θr)

|Dβu(y)| dS(y)

[inductive hypothesis] ≤ 1

ωn(θr)n
Cm

((1− θ)r)n+m
‖u‖L1(B(x,r))

∫
∂B(x,θr)

dS(y)

= Cmn
1

(1− θ)n+mθ

1

rn+m+1
‖u‖L1(B(x,r)).
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Taking θ = 1
m+1

and Cm = (2nnm)m

ωn
, we get

|Dαu(x)| ≤ (2nnm)m

ωn

n(m+ 1)m+n+1

mm+n

1

rn+m+1
‖u‖L1(B(x,r))

[computations] ≤ (2nn(m+ 1))m+1

ωn

1

rn+m+1
‖u‖L1(B(x,r)).

�

Exercise 10.31. Let a, b < 0 and define φ : (0, 1)→ R, φ(θ) = θaθb. Find the minimum
and the point of minimum of φ on (0, 1).

Solution: θm = a
a+b

and φ(θm) =
(

a
a+b

)a+b

. ♦

Theorem 10.32 (Analyticity). Harmonic functions are analytic.

Proof. NOTA BENE: This proof contains a mistake. Find it and correct it. The correct
proof is in Section §18.1, page 122.

Let U ⊂ Rn be open and u ∈ C∞(U) a harmonic function. Fix x̂ ∈ U and set
r̂ = 1

4
dist(x̂, ∂U). We claim that there exists ε ∈ (0, 1) such that, if

r < εr̂,

then the Taylor series of u centered at x̂ converges on B(x̂, r) to u, that is, for every
x ∈ B(x̂, r),

u(x) = lim
N→∞

N∑
k=0

∑
|α|=k

Dαu(x̂)

α!
(x− x̂)α.

To this aim, define the reminder function

RN (x) = u(x)−
N−1∑
k=0

∑
|α|=k

Dαu(x̂)

α!
(x− x̂)α.

For every x ∈ B(x̂, r) there exists tx ∈ [0, 1] such that

RN (x) =
∑
|α|=N

Dαu(x̂+ t(x− x̂))

α!
(x− x̂)α.

Using Proposition 10.27, we make the following estimate: since x̂ + t(x − x̂) ∈ B(x̂, r) ⊂
B(x̂, r̂),

|RN (x)| ≤
∑
|α|=N

|Dαu(x̂+ t(x− x̂))|
α!

|x− x̂|N

(42)
≤ (2n+1nN)N‖u‖L1(B(x̂,r̂))

ωnr̂n+N
rN

∑
|α|=N

1

α!

(46)
=
‖u‖L1(B(x̂,r̂))

ωnr̂n
εN (2n+1nN)N

nN

N !

=
‖u‖L1(B(x̂,r̂))

ωnr̂n

√
2πN(N/e)N

N !

(ε2n+1n2N)N√
2πN(N/e)N

=
‖u‖L1(B(x̂,r̂))

ωnr̂n

√
2πN(N/e)N

N !

(ε2n+1n2e)N√
2πN

,

where we have used the Multinomial Theorem

(46) nN = (

n∑
j=1

1)N =
∑
|α|=N

N !

α!
.

Using Stirling’s formula

lim
N→∞

√
2πN(N/e)N

N !
= 1,
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we conclude that, if ε ∈ (0, 1) is so that ε2n+1n2e < 1, then limN→∞ |RN (x)| = 0. �

§10.14. Liouville’s Theorem.

Theorem 10.33 (Liouville’s Theorem). If u : Rn → C is harmonic and bounded, then u
is constant.

Proof. Fix x ∈ Rn. Then, for all r > 0, we have from Proposition 10.27,

|Du(x)| ≤
n∑
j=1

∣∣∣∣ ∂u∂xj (x)

∣∣∣∣ ≤ nC1

rn+1

∫
B(x,r)

|u(y)| dy

≤ nC1

rn+1
‖u‖L∞(Rn)ωnr

n =
nC1ωn‖u‖L∞(Rn)

r
.

Since this inequality holds for every r > 0, then Du(x) = 0. Since x is arbitrary, then
Du ≡ 0 on Rn, i.e., u is constant. �

Exercise 10.34. Prove Liouville’s Theorem using only the ball mean-value property.
Solution: Fix x̂ ∈ Rn and x ∈ B(x̂, 1). Then

|u(x)− u(x̂)| =
∣∣∣∣∣−
∫
B(x,r)

u(y) dy −−
∫
B(x̂,r)

u(y) dy

∣∣∣∣∣
=

1

ωnrn

∣∣∣∣∣
∫
B(x,r)\B(x̂,r)

u(y) dy −
∫
B(x̂,r)\B(x,r)

u(y) dy

∣∣∣∣∣
≤ 1

ωnrn

∫
B(x̂,r+1)\B(x̂,r−1)

|u(y)|dy

≤ ‖u‖L∞(Rn)
(r + 1)n − (r − 1)n

rn

= ‖u‖L∞(Rn) ((1 + 1/r)n − (1− 1/r)n)
r→∞−→ 0.

♦

§10.15. Representation formula. Define

C2
b (Rn) = {u ∈ C2(Rn) : ‖u‖L∞ <∞}.

Theorem 10.35. Suppose n ≥ 3 and fix f ∈ C2
c (Rn). The solutions u of −4u = f in

C2
b (Rn) are exactly all functions in the family{

x 7→
∫
Rn

Φ(x− y)f(y) dy + c : c ∈ C
}

Proof. We already know that the function ũ(x) =
∫
Rn Φ(x− y)f(y) dy is of class C2 and

solves −4ũ = f , see Theorem 10.4.
We claim that ũ ∈ C2

b (Rn). Indeed, if spt(f) ⊂ Rn \B(x,R), then

|ũ(x)| =
∣∣∣∣∣
∫

spt(f)

Φ(x− y)f(y) dy

∣∣∣∣∣
≤ ‖f‖L∞Φ(R)|spt(f)|.

So, if spt(f) ⊂ B(0, L), then for every x with |x| ≥ L, we have ũ(x) ≤ ‖f‖L∞ |spt(f)|Φ(|x|−
L). Therefore, limx→∞ |ũ(x)| = 0. In particular, ũ is bounded on Rn.

If −4u = f and if u is bounded, then u−ũ is bounded and4(u−ũ) = 0. By Liouville’s
Theorem 10.33, u− ũ is constant. �

§10.16. Harnack’s Inequality.

Theorem 10.36 (Harnack’s Inequality). Let U ⊂ Rn be open and V b U an open and
connected subset. There exists C > 0 (depending on U and V ) such that, if u : U →
[0,+∞) is harmonic on U and non-negative, then

sup
V
u ≤ C inf

V
u,
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or, equivalentely,

∀x, y ∈ V : u(x) ≤ Cu(y).

Proof. Let r = 1
4
dist(V, ∂U). If x, y ∈ V are such that |x − y| < r, then, by the mean

value property Theorem 10.8,

u(x) = −
∫
B(x,2r)

u(z) dz

=
1

ωn(2r)n

(∫
B(y,r)

u(z) dz +

∫
B(x,2r)\B(y,r)

u(z) dz

)

[since u ≥ 0] ≥ 1

2n
−
∫
B(y,r)

u(z) dz =
1

2n
u(y).

Since V̄ is compact and connected, there is a finite family of points x1, . . . , xN ∈ V such
that |xj −xj+1| < r and V ⊂ ⋃Nj=1 B(xj , r); see Exercise 10.38. Then, whenever x, y ∈ V ,

u(x) ≥
(

1

2n

)N+1

u(y).

�

Remark 10.37. Here are a few comments to Theorem 10.36:
(1) If infV u = 0, then u = 0.
(2) If infV u = 1, then supV u ≤ C, where the constant C is determined by U and V ,

but independent on u.
(3) Example on R: take V = (1, 2) and U = (0, 4) and make a picture of affine maps

that must be positive on U .

Exercise 10.38. Let K ⊂ Rn be compact and connected and r > 0. Show that there is
a finite family of points x1, . . . , xN ∈ K such that |xj −xj+1| < r and K ⊂ ⋃Nj=1 B(xj , r).
♦

§10.17. Green’s function. (See section 2.2.4 in Evans’ book)

Theorem 10.39 (Representation formula using Green’s function). Let U ⊂ Rn be open,
bounded and with C1 boundary ∂U . Suppose that there exists a corrector function φ :
Ū × Ū → R, φ(x, y) = φx(y), such that, for every x ∈ U ,{

4φx = 0 in U,
φx(y) = Φ(y − x) ∀y ∈ ∂U,

where Φ is the fundamental solution in Rn. Define the Green’s function of U as

G : {(x, y) ∈ U × U : x 6= y} → R, G(x, y) = Φ(y − x)− φx(y).

If u ∈ C2(Ū), then, for every x ∈ U ,

(47) u(x) = −
∫
∂U

u(y)∇G(x, y) · νU (y) dS(y)−
∫
U

4u(y)G(x, y) dy.

In particular, if f ∈ C0(U), g ∈ C0(∂U) and u ∈ C2(Ū) are such that{
−4u = f in U,
u = g on ∂U,

then, for all x ∈ U ,

u(x) = −
∫
∂U

g(y)∇G(x, y) · νU (y) dS(y)−
∫
U

f(y)G(x, y) dy.

Proof. If ε > 0 is such that B(x, ε) b U , then∫
U

4u(y)G(x, y) dy =

∫
B(x,ε)

4u(y)G(x, y) dy +

∫
U\B(x,ε)

4u(y)G(x, y) dy.
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where both 4u and G(x, ·) belong to L1(U) and thus

lim
ε→0

∫
B(x,ε)

4u(y)G(x, y) dy = 0.

Set Vε = U \B(x, ε). Then∫
Vε

4u(y)G(x, y) dy =

∫
Vε

divy(∇u(y)G(x, y)) dy −
∫
Vε

∇u(y) · ∇yG(x, y) dy

=

∫
Vε

divy(∇u(y)G(x, y)) dy −
∫
Vε

divy(u(y)∇yG(x, y)) dy

+

∫
Vε

u(y)4yG(x, y)︸ ︷︷ ︸
=0

dy

=

∫
∂Vε

∇u(y)G(x, y) · νVε(y) dS(y)−
∫
∂Vε

u(y)∇yG(x, y) · νVε(y) dS(y)

= −
∫
∂B(x,ε)

∇u(y)G(x, y) · y − x|y − x| dS(y) +

∫
∂U

∇u(y)G(x, y)︸ ︷︷ ︸
=0

·νU (y) dS(y)

−
∫
∂U

u(y)∇yG(x, y) dS(y) +

∫
∂B(x,ε)

u(y)∇yG(x, y) · y − x|y − x| dS(y)

= −
∫
∂B(x,ε)

∇u(y)G(x, y) · y − x|y − x| dS(y)−
∫
∂U

u(y)∇yG(x, y) dS(y)

+

∫
∂B(x,ε)

u(y)∇yΦ(y − x) · y − x|y − x| dS(y) +

∫
∂B(x,ε)

u(y)∇yφx(y) · y − x|y − x| dS(y).

Since we have

lim
ε→0

∫
∂B(x,ε)

G(x, y)∇u(y) · y − x|y − x| dy = 0,(48)

lim
ε→0

∫
∂B(x,ε)

u(y)∇yΦ(y − x) · y − x|y − x| dy = −u(x), (see Cor. 10.5)(49)

lim
ε→0

∫
∂B(x,ε)

u(y)∇yφx(y) · y − x|y − x| dy = 0,(50)

then we conclude that∫
U

4u(y)G(x, y) dy = lim
ε→0

∫
B(x,ε)

4u(y)G(x, y) dy +

∫
U\B(x,ε)

4u(y)G(x, y) dy

= −u(x)−
∫
∂U

u(y)∇yG(x, y) dy.

So, we have (47). �

Remark 10.40. If U is connected, then for each x ∈ U there exists at most one corrector
function φx, by Theorem 10.24. At the moment, however, we do not know whether
corrector function exists.

Exercise 10.41. Show (48), (49), and (50), from the proof of the Representation formula
using Green’s function, Theorem 10.39:

lim
ε→0

∫
∂B(x,ε)

G(x, y)∇u(y) · y − x|y − x| dy = 0,

lim
ε→0

∫
∂B(x,ε)

u(y)∇yΦ(y − x) · y − x|y − x| dy = −u(x),

lim
ε→0

∫
∂B(x,ε)

u(y)∇yφx(y) · y − x|y − x| dy = 0.

♦
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§10.18. Symmetry of Green’s functions.

Theorem 10.42 (Symmetry of Green’s functions). Let U ⊂ Rn be open and bounded,
with C1 boundary ∂U . Let G be the Green’s function on U . Then

∀x, y ∈ U with x 6= y G(x, y) = G(y, x).

Proof. Fox x, y ∈ U with x 6= y. Define

v(z) = G(x, z) = Φ(z − x)− φx(z) and w(z) = G(y, z) = Φ(z − y)− φy(z),

where Φ is the fundamental solution on Rn and φy is a corrector function. Then 4v =
4w = 0 in U \ {x, y} and u = v = 0 on ∂U .

Let ε > 0 be such that B̄(x, ε) ∪ B̄(y, ε) ⊂ U and B̄(x, ε) ∩ B̄(y, ε) = ∅. Set Vε =
U \ (B̄(x, ε) ∪ B̄(y, ε)). Then2

0 =

∫
Vε

(v4w − w4v) dz

(51)
=

∫
∂Vε

(v∇w − w∇v) · νVε dS(z)

= −
∫
∂B(x,ε)

(v∇w − w∇v) · z − x|z − x| dS(z) +

∫
∂B(y,ε)

(v∇w − w∇v) · z − y|z − y| dS(z).

Since, using also Corollary 10.5,

(52)
lim
ε→0

∫
∂B(x,ε)

v∇w · z − x|z − x| dS(z) = 0,

lim
ε→0

∫
∂B(x,ε)

w∇v · z − x|z − x| dS(z) = −w(x),

then we obtain w(x) = v(y). �

Exercise 10.43. Show (52) in the proof of the Symmetry of Green’s functions, Theo-
rem 10.42:

lim
ε→0

∫
∂B(x,ε)

v∇w · z − x|z − x| dS(z) = 0,

lim
ε→0

∫
∂B(x,ε)

w∇v · z − x|z − x| dS(z) = −w(x).

♦

§10.19. Uniqueness by Energy methods.

Theorem 10.44 (Uniqueness by Energy methods). Let U ⊂ Rn be open, bounded and
with C1 boundary ∂U . Fix f ∈ C0(U) and g ∈ C0(∂U). Then there exists at most one
solution u in C2(Ū) to the boundary value problem

(53)

{
−4u = f in U,
u = g on ∂U.

Proof. Suppose u1, u2 ∈ C2(Ū) are solutions to (53) . Then u = u1 − u2 ∈ C2(Ū) is so
that 4u = 0 in U and u = 0 on ∂U . Therefore,

0 =

∫
U

u4u dx

=

∫
U

div(u∇u) dx−
∫
U

∇u · ∇u dx

=

∫
∂U

u∇u · νU dS(x)−
∫
U

|∇u|2 dx

2

(51)
∫
U

(v4w − w4v) dx =

∫
∂U

(v∇w − w∇v) · νU dS(x).
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= −
∫
U

|∇u|2 dx.

Or: ∫
U

|∇u|2 dx =

∫
U

∇u · ∇udx

=

∫
U

(div(u∇u)− u4u) dx

=

∫
∂U

u∇u dS(x) = 0.

Hence, ∇u = 0 in U , that is, since U is connected, u is constant. Since u = 0 on ∂U , then
u = 0 in U .

�

Remark 10.45. What is the difference between Theorem 10.44 and Theorem 10.24?

§10.20. Dirichlet’s principle.

Theorem 10.46 (Dirichlet’s principle). Let U ⊂ Rn be open, bounded and with C1

boundary ∂U . Fix f ∈ C0(U) and g ∈ C0(∂U).
Define the Dirichlet’s energy functional

Ef : C2(Ū)→ R, Ef (u) =

∫
U

(
1

2
|∇u|2 − uf) dx.

Define the admissible set

Ag = {u ∈ C2(Ū) : u = g on ∂U}.
For all u ∈ C2(Ū), the following statements are equivalent:

(i) (53) holds, that is, {
−4u = f in U,
u = g on ∂U.

(ii) u ∈ Ag and Ef (u) ≤ Ef (w) for all w ∈ Ag, i.e., u is the (unique) arg-min of Ef
on Ag.

Proof. (i)⇒ (ii): The fact that u ∈ Ag is clear. We need to show that Ef (u) ≤ Ef (w) for
all w ∈ Ag. If w ∈ Ag, then

Ef (u)− Ef (w) =

∫
U

(
(|∇u|2/2− uf)− (|∇w|2/2− wf)

)
dx

=
1

2

∫
U

(|∇u|2 − |∇w|2) dx−
∫
U

(u− w)f dx,

where

−
∫
U

(u− w)f dx =

∫
U

(u− w)4udx

=

∫
U

(div((u− w)∇u)−∇(u− w) · ∇u) dx

=

∫
∂U

(u− w)∇u · νU dS︸ ︷︷ ︸
=0 because uw,∈Ag

−
∫
U

|∇u|2 dx+

∫
U

∇w · ∇u dx.

Therefore,

Ef (u)− Ef (w) = −
∫
U

(|∇u|2/2 + |∇w|2/2−∇w · ∇u) dx

= −
∫
U

|∇u−∇w|2 dx ≤ 0.

Remark 10.47. We see from this calculation that, if Ef (u) = Ef (w), then u = w. This
is indeed the proof of the uniqueness in disguised terms.
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(ii)⇒ (i): Fix φ ∈ C∞c (U) and define ιφ : R→ R by

ιφ(τ) := Ef (u+ τφ).

Notice that u + τφ ∈ Ag for all τ ∈ R, because φ = 0 on ∂U . If ιφ is differentiable at 0,
then d

dτ
ιφ(0) = 0. In fact, we have

ιφ(τ) =

∫
U

(|∇(u+ τφ)|2/2− (u+ τφ)f) dx

= τ2

∫
U

|∇φ|2/2 dx+ τ

∫
U

(∇u · ∇φ− φf) dx+

∫
U

(|∇u|2/2− uf) dx.

So, ιφ(τ) is polynomial in τ and it has a minimum at 0 if and only if
∫
U

(∇u·∇φ−φf) dx =
0, where∫

U

(∇u · ∇φ− φf) dx =

∫
∂U

φ∇u · νU dS︸ ︷︷ ︸= 0 because φ = 0 on ∂U −
∫
U

φ(f +4u) dx

= −
∫
U

φ · (f +4u) dx.

We conclude that, if u is as in (ii), then

(54) ∀φ ∈ C∞c (U),

∫
U

φ · (f +4u) dx = 0.

By the Fundamental Theorem of Calculus of Variations 3.6, we (54) is equivalent to
−4u = f on U . �

Remark 10.48. We have not proven yet that the boundary value problem (53) has any
solution at all. Do you have an idea of how to prove it? Think about it.
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11. Heat Equation

For U ⊂ Rn open and I ⊂ R open interval, e.g., I = (0,+∞), u ∈ C2(U × I) and
f ∈ C0(U × I), the heat equation is

∂tu−4u = 0 in U × I,
and the nonhomogeneous heat equation is

∂tu−4u = f in U × I.
In these expressions, ∂tu is the derivative of u in the direction of I in the product U × I,
while the Laplacian 4u = 4xu is with respect to the space variable, that is, in the
directions U in U × I. In other words, if (x, t) are the coordinates of U × I, with x ∈ U
and t ∈ I, then

(∂t −4)u = ∂tu−4u =
∂u

∂t
(x, t)−

n∑
j=1

∂2u

∂x2
j

(x, t).

We call ∂t−4 the heat operator. The heat operator ∂t−4 is a parabolic linear differential
operator of order 2.

§11.1. Example of solutions.

Exercise 11.1. Define

ψ+ : Rn × (0,+∞)→ R, ψ+(x, t) =
1

tn/2
exp

(
−|x|

2

4t

)
.

Show that (∂t −4)ψ+ = 0 in Rn × (0,+∞). Draw a graph of x 7→ ψ+(x, t) for positive t
when n = 1 (We will see that this function represents a forward propagation: this is why
we have a plus.) ♦

Exercise 11.2. Define

ψ− : Rn × (0,+∞)→ R, ψ−(x, t) =
1

tn/2
exp

( |x|2
4t

)
.

Show that (∂t −4)ψ+ = 0 in Rn × (0,+∞). Draw a graph of x 7→ ψ+(x, t) for positive
t when n = 1. (We will see that this function represents a backward propagation: this is
why we have a minus.) ♦

§11.2. Symmetries of the heat operator. Let U ⊂ Rn open, I ⊂ R an open interval,
u ∈ C2(U × I), O ∈ O(n) and b ∈ Rn, τ ∈ R, λ ∈ R \ {0}. Define ũ(y, s) = u(λOy +
b, λ2s+ τ). Then ũ ∈ C2(O−1(U − b)× (I − τ)) and

(55) (∂s −4y)ũ(y, s) = λ2(∂tu−4xu)(λOy + b, λ2s+ τ).

Exercise 11.3. Show the identity (55). ♦

Exercise 11.4. Let U ⊂ Rn open, I ⊂ R an open interval, u ∈ C2(U × I), O ∈ O(n) and
b ∈ Rn, τ ∈ R and λ, σ ∈ R \ {0} Define

ũ(y, s) = u(λOy + b, σs+ τ).

Compute (∂t−4)ũ in terms of (∂t−4)u. Determine for which choices of transformations
we have that, if u is a solution to the heat equation, i.e., (∂t −4)u = 0, then ũ is also a
solution to the heat equation, i.e., (∂t −4)ũ = 0. ♦

Exercise 11.5. Show that, if λ > 0 and if (∂t − 4)u = 0, then (∂t − 4)ũ = 0, where
ũ(x, t) = u(λx, λ2t). ♦

§11.3. Fundamental solution for the heat equation. The fundamental solution for
the heat equation is the function Φ : Rn × R \ {(0, 0)} → [0,+∞) defined by

(56) Φ(x, t) =

{
1

(4πt)n/2
exp

(
− |x|2

4t

)
for x ∈ Rn and t > 0,

0 otherwise, i.e., (x, t) ∈ (Rn × (−∞, 0]) \ {(0, 0)}.
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Exercise 11.6. Find the formula for the fundamental solution for the heat equation by
yourself in the following way: look for Φ of the form Φ(x, t) = 1

tα
v
(
|x|
tβ

)
, or Φ(x, t) =

1
tα
v
(
|x|2
tβ

)
, with (∂t −4x)Φ = 0 in Rn × (0,+∞). ♦

Lemma 11.7.

(57)
∫
R
e−x

2

dx =
√
π.

Proof. See stackexchange. �

Exercise 11.8. Find a proof (by yourself or in the literature) for (57), that is,∫
R
e−x

2

dx =
√
π.

♦

Proposition 11.9 (Properties of the fundamental solution). The function Φ defined
in (56) has the following properties:

(1) Φ ∈ C∞(Rn × R \ {(0, 0)}).
(2) for every t > 0 and x ∈ Rn,

∇xΦ(x, t) = − 1

(4πt)n/2
exp

(
−|x|

2

4t

)
x

2t
= −Φ(x, t)

x

2t
,

∂tΦ(x, t) =
1

(4πt)n/2
exp

(
−|x|

2

4t

)( |x|2
4t2
− n

2

1

4πt

)
= Φ(x, t)

( |x|2
4t2
− n

2t

)
,

D2
xΦ(x, t) = Φ(x, t)

(
x⊗ x
4t2

− Id

2t

)
.

(3) (∂t −4)Φ = 0 in Rn × R \ {(0, 0)}.
(4) for every t > 0,

∫
Rn Φ(x, t) dx = 1

Proof. Proof of 1: To show that Φ is smooth, we proceed as follows. Define

F =

φ : Rn × R \ {(0, 0)} → R :

∃P (x, t) polynomial with
φ(x, t) = P (x, t−1/2) exp

(
− |x|2

4t

)
for t > 0,

while φ(x, t) = 0 for t ≤ 0


Then we have the following two facts (whose proof is left as an exercise): First, F ⊂
C0(Rn × R). Second, if φ ∈ F , then ∂φ

∂xj
, ∂φ
∂t
∈ F , for all j ∈ {1, . . . , n}. We conclude

that F ⊂ C∞(Rn × R \ {(0, 0)}). Since Φ ∈ F , we the proof is complete.
Proofs of 2 and 3 are left as exercise.
Proof of 4: Fix t > 0. Then we have∫

Rn
Φ(x, t) dx =

∫
Rn

exp

(
−|x|

2

4t

)
dx

(4πt)n/2

[y =
x

2
√
t
] =

1

πn/2

∫
Rn

exp(−|y|2) dy

=
1

πn/2

n∏
j=1

∫
R

exp(−y2
j ) dyj

(57)
= 1.

�

Exercise 11.10. Complete the proof of part 1 in Proposition 11.9. Specifically, define

F =

φ : Rn × R \ {(0, 0)} → R :

∃P (x, t) polynomial with
φ(x, t) = P (x, t−1/2) exp

(
− |x|2

4t

)
for t > 0,

while φ(x, t) = 0 for t ≤ 0

 .

Then show

https://math.stackexchange.com/questions/154968/is-there-really-no-way-to-integrate-e-x2
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(1) F ⊂ C0(Rn × R).
(2) if φ ∈ F , then ∂φ

∂xj
, ∂φ
∂t
∈ F , for all j ∈ {1, . . . , n}.

Conclude that F ⊂ C∞(Rn × R \ {(0, 0)}). ♦

Exercise 11.11. Prove parts 2 and 3 in Proposition 11.9. Specifically, show that for
every t > 0 and x ∈ Rn,

∇xΦ(x, t) = − 1

(4πt)n/2
exp

(
−|x|

2

4t

)
x

2t
= −Φ(x, t)

x

2t
,

∂tΦ(x, t) =
1

(4πt)n/2
exp

(
−|x|

2

4t

)( |x|2
4t2
− n

2

1

4πt

)
= Φ(x, t)

( |x|2
4t2
− n

2t

)
,

D2
xΦ(x, t) = Φ(x, t)

(
x⊗ x
4t2

− Id

2t

)
,

where Φ is the fundamental solution of the heat operator. Conclude that (∂t −4x)Φ = 0
in Rn × R \ {(0, 0)}. ♦

§11.4. Solution to the Cauchy problem.

Theorem 11.12. Let g ∈ C0(Rn) ∩ L∞(Rn) and define u : Rn × (0,+∞)→ C as

u(x, t) =

∫
Rn

Φ(x− y, t)g(y) dy =
1

(4πt)n/2

∫
Rn

exp

(
−|x− y|

2

4t

)
g(y) dy,

for x ∈ Rn and t > 0, where Φ is the fundamental solution for the heat operator (56).
(1) u ∈ C∞(Rn × (0,+∞)) and, for every α ∈ Nn+1,

(58) Dαu(x, t) =

∫
Rn

Dα
x,tΦ(x− y, t)g(y) dy.

(2) (∂t −4)u = 0 in Rn × (0,+∞);
(3) for each x̂ ∈ Rn,

(59) lim
(x,t)→(x̂,0)
x∈Rn,t>0

u(x, t) = g(x).

In particular, u has a continuous extension u ∈ C0(Rn × [0,+∞)) ∩ C∞(Rn × (0,+∞))
and {

∂tu−4u = 0 in Rn × (0,+∞),

u = g on Rn × {0}.

Proof. Proof of 1:

K(x, t; y) =
1

(4πt)n/2
exp

(
−|x− y|

2

4t

)
g(y).

For R > 0 and ε > 0, we have, for every x ∈ Rn with |x| < R and all t > ε,

|K(x, t; y)| ≤ hR,ε(y) :=


‖g‖L∞

(4πε)n/2 if |y| ≤ R
‖g‖L∞

(4πε)n/2 exp
(
− (|y|−R)2

4ε

)
if |y| > R

Since hR ∈ L1(Rn), satisfy the conditions of Theorem (3.3.2), so u ∈ C0(B(0, R) ×
(ε,+∞)). Since this holds for every R > 0 and ε > 0, we conclude u ∈ C0(Rn× (0,+∞)).
To prove the smoothness of u, one uses the same strategy as in the proof of Proposi-
tion 11.9.1; see Exercise 11.13. Also (58) follows from Proposition 11.9.

Proof of 2: From (58), we have

(∂t −4)u(x, t) =

∫
Rn

(∂t −4x)Φ(x− y, t)g(y) dy = 0,

because (∂t−4x)Φ(x−y, t) = 0 for every y ∈ Rn and t > 0, thanks to Proposition 11.9.3.
Proof of 3: Fix x̂ ∈ Rn and ε > 0. Since g is continuous, there exists δ > 0 such that

|g(y)− g(x̂)| < ε for all y ∈ B(x̂, δ).

|u(x, t)− g(x̂)| =
∣∣∣∣∫

Rn
Φ(x− y, t)g(y) dy − g(x̂)

∫
Rn

Φ(x− y, t) dy

∣∣∣∣
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≤
∫
Rn

Φ(x− y, t)|g(y)− g(x̂)| dy

=

∫
B(x̂,δ)

Φ(x− y, t) |g(y)− g(x̂)|︸ ︷︷ ︸
<ε

dy

+

∫
Rn\B(x̂,δ)

Φ(x− y, t)|g(y)− g(x̂)| dy

≤ ε
∫
Rn

Φ(x− y, t) dy︸ ︷︷ ︸
=1

+

∫
Rn\B(x̂,δ)

Φ(x− y, t)|g(y)− g(x̂)| dy︸ ︷︷ ︸
=:Jδ(x)

.

If x ∈ B(x̂, δ/2), then, for all y ∈ Rn \B(x̂, δ),

(60) |y − x| ≥ |y − x̂| − |x̂− x| ≥ |y − x̂| − δ/2 ≥ |y − x̂| − |y − x̂|/2 = |y − x̂|/2.
Hence, if x ∈ B(x̂, δ),

Jδ(x) ≤ 2‖g‖L∞
∫
Rn\B(x̂,δ)

exp(− |x−y|2
4t

)

(4πt)n/2
dy

(60)
≤ 2‖g‖L∞

(4π)n/2

∫
Rn\B(x̂,δ)

exp(− |y−x̂|2
16t

)

tn/2
dy

[z =
y − x̂√

t
] ≤ 2‖g‖L∞

(4π)n/2

∫
Rn\B(x̂,δ/

√
t)

exp(−|z|
2

16
) dy︸ ︷︷ ︸

=:E(δ,t)

.

Since δ > 0 and since the integrand in E(δ, t) is integrable over Rn, then limt→0+ E(δ, t) =
0. Therefore, there exists τ > 0 such that E(δ, t) < ε for all t ∈ (0, τ). All in all, we
conclude that

(61) ∀ε > 0∃δ, τ > 0∀x ∈ B(x̂, δ/2) ∀t ∈ (0, τ) |u(x, t)− g(x̂)| ≤ ε+
2‖g‖L∞
(4π)n/2

ε.

(61) is (59). �

Exercise 11.13. Show part 1 in Theorem 11.12. ♦

§11.5. Approximation of the identity. From the proof of Theorem 11.12, we can
extract the following lemma:

Lemma 11.14. Let T > 0 and g ∈ C0(Rn × [0, T ]) ∩ L∞(Rn × [0, T ]). Then, for every
x̂ ∈ Rn,

(62) lim
(x,t)→(x̂,0)

t>0

∫
Rn

Φ(z, t)g(x− z, t) dz = g(x̂, 0).

Exercise 11.15. Prove Lemma 11.14. ♦

Proof. Define

u(x, t) =

∫
Rn

Φ(z, t)g(x− z, t) dz =

∫
Rn

Φ(x− z, t)g(z, t) dz.

Fix x̂ ∈ Rn and ε > 0. Since g is continuous, there exists δ > 0 such that |g(y, t)−g(x̂, 0)| <
ε for all y ∈ B(x̂, δ) and all t ∈ [0, δ]. Then

|u(x, t)− g(x̂, 0)| =
∣∣∣∣∫

Rn
Φ(x− y, t)g(y, t) dy − g(x̂, 0)

∫
Rn

Φ(x− y, t) dy

∣∣∣∣
≤
∫
Rn

Φ(x− y, t)|g(y, t)− g(x̂, 0)| dy

=

∫
B(x̂,δ)

Φ(x− y, t) |g(y, t)− g(x̂, 0)|︸ ︷︷ ︸
<ε

dy

+

∫
Rn\B(x̂,δ)

Φ(x− y, t)|g(y, t)− g(x̂, 0)|dy
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≤ ε
∫
Rn

Φ(x− y, t) dy︸ ︷︷ ︸
=1

+

∫
Rn\B(x̂,δ)

Φ(x− y, t)|g(y, t)− g(x̂, 0)|dy︸ ︷︷ ︸
=:Jδ(x)

.

If x ∈ B(x̂, δ/2), then, for all y ∈ Rn \B(x̂, δ),

(63) |y − x| ≥ |y − x̂| − |x̂− x| ≥ |y − x̂| − δ/2 ≥ |y − x̂| − |y − x̂|/2 = |y − x̂|/2.
Hence, if x ∈ B(x̂, δ/2),

Jδ(x) ≤ 2‖g‖L∞
∫
Rn\B(x̂,δ)

exp(− |x−y|2
4t

)

(4πt)n/2
dy

(63)
≤ 2‖g‖L∞

(4π)n/2

∫
Rn\B(x̂,δ)

exp(− |y−x̂|2
16t

)

tn/2
dy

[z =
y − x̂√

t
] =

2‖g‖L∞
(4π)n/2

∫
Rn\B(x̂,δ/

√
t)

exp(−|z|
2

16
) dy︸ ︷︷ ︸

=:E(δ,t)

.

Since δ > 0 and since the integrand in E(δ, t) is integrable over Rn, then limt→0+ E(δ, t) =
0. Therefore, there exists τ ∈ (0, δ) such that E(δ, t) < ε for all t ∈ (0, τ). All in all, we
conclude that

(64) ∀ε > 0∃δ, τ > 0∀x ∈ B(x̂, δ/2) ∀t ∈ (0, τ) |u(x, t)− g(x̂, 0)| ≤ ε+
2‖g‖L∞
(4π)n/2

ε.

(64) is (62). �

§11.6. Solution to the nonhomogeneous Cauchy problem. A solution for the non-
homogeneous Cauchy problem (66) is constructed as follows. For every s > 0 let us be
the solution constructed in the previous Theorem for the Cauchy problem{

∂tus −4us = 0 in Rn × (s,+∞),

us = f(·, s) on Rn × {s}.

So, us(x, t) =
∫
Rn Φ(x − y, t − s)f(y, s) dy. Then, we set u(x, t) =

∫ t
0
us(x, t) ds, that

is, (65). This strategy is called Duhamel’s principle.

Theorem 11.16 (Solution to the nonhomogeneous Cauchy problem). Let f ∈ C2;1
c (Rn×

[0,+∞)) and define u : Rn × (0,+∞)→ R by

(65)
u(x, t) =

∫ t

0

∫
Rn

Φ(x− y, t− s)f(y, s) dy ds

=

∫ t

0

1

(4π(t− s))n/2
∫
Rn

exp

(
−|x− y|

2

4(t− s)

)
f(y, s) dy ds.

Then the following holds:
(1) u ∈ C2;1(Rn × (0,+∞));
(2) (∂t −4)u = f in Rn × (0,+∞);
(3) for every x̂ ∈ Rn,

lim
(x,t)→(x̂,0)
x∈Rn,t>0

u(x, t) = 0.

In particular, u has a continuous extension u ∈ C0(Rn × [0,+∞)) ∩ C∞(Rn × (0,+∞))
and

(66)

{
∂tu−4u = f in Rn × (0,+∞),

u = 0 on Rn × {0}.

Proof. Proof of 1. First, notice that the integrand in the definition (65) of u is integrable
and thus u is well defined. Moreover,

u(x, t) =

∫ t

0

∫
Rn

Φ(z, r)f(x− z, t− r) dz dr.
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Define

K(x, t; z, r) := Φ(z, r)f(x− z, t− r)1[0,t](r).

Then |K(x, t; z, r)| ≤ ‖f‖L∞Φ(z, r) for all (x, t), (z, r) ∈ Rn × R \ {(0, 0)}. So, we can
apply Theorem 3.3.

Proof of 2. With the support of Theorem 3.3, we can compute, for x ∈ Rn, t > 0,
and α ∈ Nn with |α| ≤ 2,

∂tu(x, t) =

∫
Rn

Φ(z, t)f(x− z, 0) dz +

∫ t

0

∫
Rn

Φ(z, r)∂tf(x− z, t− r) dz dr,

Dαu(x, y) =

∫ t

0

∫
Rn

Φ(z, r)Dαf(x− z, t− r) dz dr.

Therefore, for x ∈ Rn, t > 0 and ε ∈ (0, t),

(∂t −4)u(x, t) =

∫
Rn

Φ(z, t)f(x− z, 0) dz

+

∫ t

0

∫
Rn

Φ(z, r)(∂t −4)f(x− z, t− r) dz dr

=

∫
Rn

Φ(z, t)f(x− z, 0) dz︸ ︷︷ ︸
:=K

+

∫ ε

0

∫
Rn

Φ(z, r)(∂t −4)f(x− z, t− r) dz dr︸ ︷︷ ︸
:=Jε

+

∫ t

ε

∫
Rn

Φ(z, r)(∂t −4)f(x− z, t− r) dz dr︸ ︷︷ ︸
:=Iε

.

Now,

|Jε| ≤ (‖∂tf‖L∞ + ‖D2f‖L∞)

∫ ε

0

∫
Rn

Φ(z, r) dz dr

= ε(‖∂tf‖L∞ + ‖D2f‖L∞).

Next,

Iε =

∫ t

ε

∫
Rn

Φ(z, r)(∂t −4x)f(x− z, t− r) dz dr

=

∫ t

ε

∫
Rn

Φ(z, r)(−∂r −4z)f(x− z, t− r) dz dr

=

∫ t

ε

∫
Rn

(−∂r(Φ(z, r)f(x− z, t− r)) + ∂rΦ(z, r)f(x− z, t− r)) dz dr

−
∫ t

ε

∫
Rn

divz
(

Φ(z, r)∇zf(x− z, t− r)−∇zΦ(z, r)f(x− z, t− r)
)

dz dr

−
∫ t

ε

∫
Rn
4Φ(z, r)f(x− z, t− r)) dz dr

(∗)
= −K +

∫
Rn

Φ(z, ε)f(x− z, t− ε) dz dr,

where we used in (∗) the fact that Φ solves the homogeneous heat equation and that f
has compact support. So, we conclude that

(∂t −4)u(x, t) = lim
ε→0

∫
Rn

Φ(z, ε)f(x− z, t− ε) dz dr

[Lemma 11.14] = f(x, t).

Proof of 3. We easily conclude with the following estimate:

|u(x, t)| ≤ ‖f‖L∞
∫ t

0

∫
Rn

Φ(x− y, t− s) dy ds
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(x, t)

E(x, t; r)

Figure 2. The shape of the set E(x, t; r) defined in §11.7.

[by 11.9.4] = ‖f‖L∞t.
�

§11.7. Mean-value formula. For (x, t) ∈ Rn × R and r > 0, define

E(x, t; r) = {(y, s) ∈ Rn × R : s ≤ t, Φ(x− y, t− s) ≥ 1

rn
}

= (x, t) + E(0, 0; r) = (x, t) + δr(E(0, 0; 1)),

where δr(y, s) = (ry, r2s). Notice that E(0, 0; 1) = {(y, s) : Φ(−y,−s) ≥ 1}. See Fig-
ure §11.7 for a drawing of the shape of E(x, t; r). Since

Φ(−y,−s) ≥ 1⇔ (4π|s|)n/2
exp

(
−|y|

2

4|s|

)
≥ 1

⇔ n

2
log(4π|s|) ≤ −|y|

2

4|s|

⇔ − 1

4π
< s < 0 |y|2 ≤ −2n|s| log(4π|s|).

Theorem 11.17. Let Ω ⊂ Rn × R be open and u ∈ C2;1(Ω) such that (∂t −4)u = 0 in
Ω. Then, for all (x, t) ∈ Ω and r > 0 such that E(x, t; r) ⊂ Ω, we have

u(x, t) =
1

4rn

∫∫
E(x,t;r)

u(y, s)
|x− y|2
(t− s)2

dy ds.

Proof. See [5, pag.53]. �

§11.8. Strong maximum and minimum principles. For U ⊂ Rn and T > 0, define:
(1) the closed parabolic cylinder ŪT := Ū × [0, T ];
(2) the parabolic interior UT := U × (0, T ] (notice that T is included);
(3) the parabolic boundary ΓT := ŪT \ UT = (U × {0}) ∪ (∂U × [0, T )).

Theorem 11.18 (Strong maximum principle). Let U ⊂ Rn be open and bounded. Let
u ∈ C2;1(UT ;R) ∩ C0(ŪT ;R) be a real-valued function such that (∂t − 4)u = 0 in UT .
Then

(67) max
ŪT

u = max
ΓT

u.

Proof. (From Folland [7, Thm 4.16]). In (67), the inequality maxŪT u ≥ maxΓT u is clear.
We need to show maxŪT u ≤ maxΓT u.

Let ε > 0 and define vε(x, t) = u(x, t) + ε|x|2. Let T ′ ∈ (0, T ). We claim that

(68) max
ŪT ′

vε = max
ΓT ′

vε.
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First of all, notice that, in UT ,

(69) ∂tvε −4vε = ∂tu−4u− ε4(|x|2) = −2εn > 0.

Suppose that (x, t) ∈ UT ′ is a point of maximum for vε on ŪT ′ . Then 4vε(x, t) ≤ 0 and
∂tvε ≥ 0. However, this is in contradiction with (69). We conclude that (68) must hold.

To prove the statement about u, we see that

max
ŪT ′

u ≤ max
ŪT ′

vε

(69)
= max

ΓT ′
vε

≤ max
ΓT ′

u+ εmax
ŪT ′
|x|2.

Since U is bounded, then maxŪT ′ |x|
2 < ∞. So, letting ε → 0, we obtain the desired

inequality. �

Exercise 11.19. Show the following statement: Let U ⊂ Rn be open, bounded and con-
nected, T > 0, and u ∈ C2;1(UT ;R) ∩ C0(ŪT ;R) such that (∂t −4)u = 0 in UT . If there
exists (x, t) ∈ UT such that u(x, t) = maxŪT u, then u is constant on Ūt.

[This exercise turned out to be more difficult than I expected: It is proven by Evans
using the mean value formula from Theorem 11.17.] ♦

Exercise 11.20. Prove the strong minimum principle for the heat operator. ♦

Exercise 11.21. Prove the strong maximum principle for the heat operator using the
mean-value property; see [5]. ♦

§11.9. Uniqueness on bounded domains.

Theorem 11.22 (Uniqueness on bounded domains). Suppose U ⊂ Rn is open and
bounded, and T > 0. Let g ∈ C0(ΓT ) and f ∈ C(UT ). Then there exist not two dis-
tinct solutions in C2;1(UT ) ∩ C(ŪT ) to the boundary value problem

(70)

{
(∂t −4)u = f in UT ,
u = g on ΓT .

Proof. Let u1, u2 ∈ C2;1(UT ) ∩ C(ŪT ) be two solutions to (70). Then u = u1 − u2 ∈
C2;1(UT ) ∩ C(ŪT ) satisfies (∂t − 4)u = 0 in UT and u = 0 on ΓT . By the strong
maximum and minimum principles, see §11.8, both the real and the imaginary parts of
u are zero on UT , i.e., u1 = u2. �

§11.10. Maximum and minimum principles for the unbounded Cauchy prob-
lem.

Theorem 11.23 (Maximum principle for the unbounded U). Let T > 0. Let u ∈
C2;1(Rn × (0, T ];R)∩C0(Rn × [0, T ];R) be a real-valued function such that (∂t −4)u = 0
in Rn × (0, T ]. Suppose also that there are A, a > 0 such that

(71) u(x, t) ≤ A exp(a|x|2).

Then

max
Rn×[0,T ]

u = max
Rn

u(·, 0).

Proof. Let 0 < b ≤ T be such that
1

4b
− a > 0, i.e., 0 < b <

1

4a
.

We will show that

(72) ∀s, t ∈ [0, T ] with 0 < t− s < b, sup
x∈Rn

u(x, t) ≤ sup
x∈Rn

u(x, s).

Since both (71) and the heat equation are invariant under time translations (see §11.2),
we can prove (72) for s = 0 without loss of generality.
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Set g ∈ C0(Rn) by g(x) = u(x, 0). Fix ŷ ∈ Rn and t̂ ∈ (0, b): we need to show that

(73) u(ŷ, t̂) ≤ ‖g‖L∞(Rn).

For µ > 0, define, for x ∈ Rn and t ∈ (0, b),

v(x, t) = u(x, t)− µ

(b− t)n/2 exp

( |x− ŷ|2
4(b− t)

)
.

So, we have v ∈ C2;1(Rn × (0, b);R) ∩C0(Rn × [0, b);R) and (∂t −4)v = 0 in Rn × (0, b);
see §11.1.

We claim that there exists r > 0 such that

(74) sup
B(ŷ,r)×[0,b)

v ≤ ‖g‖L∞ .

By the strong maximum principle, Theorem 11.18, for every r > 0, we have

sup
B(ŷ,r)×[0,b)

v = sup

{
v(x, t) :

x ∈ B(ŷ, r) and t = 0, or
x ∈ ∂B(ŷ, r) and t ∈ [0, b)

}
.

If |x − ŷ| ≤ r, then v(x, 0) = u(x, 0) − µ

bn/2 exp
(
|x−ŷ|2

4b

)
≤ g(x) ≤ ‖g‖L∞ . If |x − ŷ| = r

and t ∈ [0, b), then

v(x, t) = u(x, t)− µ

(b− t)n/2 exp

(
r2

4(b− t)

)
≤ A exp(a|x|2)− µ

bn/2
exp

(
r2

4b

)
≤ A exp(a(|ŷ|+ r)2)− µ

bn/2
exp

(
r2

4b

)
= exp(a(|ŷ|+ r)2)

(
A− µ

bn/2
exp

(
r2

4b
− a(|ŷ|+ r)2

))
=: Jr.

Since limr→∞ Jr = −∞, we can choose r large enough that the Jr < ‖g‖L∞ . We conclude
that, for r large enough, (74) holds.

In particular, from (74) we obtain that, for every µ > 0,

(75) u(ŷ, t̂)− µ

(b− t̂)n/2 = v(ŷ, t̂) ≤ ‖g‖L∞ .

Taking the limit µ→ 0 in (75), we conclude (73). �

Exercise 11.24. State and prove the strong minimum principle for the unbounded
Cauchy problem. ♦

§11.11. Uniqueness for the unbounded Cauchy problem.

Theorem 11.25 (Uniqueness for the unbounded Cauchy problem). Let T > 0, g ∈
C0(Rn) and f ∈ C0(Rn × [0, T ]). Set

(76) A =

{
u ∈ C2;1(Rn × (0, T ]) ∩ C0(Rn × [0, T ]) :

∃A, a > 0 s.t.
|u(x, t)| ≤ A exp(a|x|2)

}
.

There does not exist two solutions in A of

(77)

{
(∂t −4)u = f in Rn × (0, T ],

u = g on Rn × {0}.

Proof. If u1, u2 ∈ A solve (77), then u = u1 − u2 ∈ A is such that (∂t − 4)u = 0 in
Rn × (0, T ] and u = 0 for t = 0. By the maximum and minimum principles §11.10,
u ≡ 0. �

Remark 11.26. The growth condition (71) is necessary: there are counter-examples. See
[10, chapter 7].

Remark 11.27. Notice that in the definition of A in (76), we require the growth con-
dition (71) both as an upper bound and as a lower bound. You should have noticed this
already in Exercise 11.24.
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§11.12. Smoothness. The following blue part contains mistakes, so it is dropped from
the content of the course. I keep it here for future memory: with a bit of work, we should
be able to fix it. Notice that we have other methods to prove that solutions to the heat
equation are smooth...

TODO: Fix proof of Lemma 11.28 .

Lemma 11.28. For (x, t) ∈ Rn × R and r > 0, define

C(x, t; r) = B̄(x, r)× [t− r2, t] ⊂ Rn × R.

Let Ω ⊂ Rn × R open. Fix (x̂, t̂) ∈ Ω and r̂ > 0 such that C := C(x̂, t̂; r̂) ⊂ Ω. Define

C′ := C(x̂, t̂;
3

4
r̂) and C′′ := C(x̂, t̂;

1

2
r̂).

Let ζ ∈ C∞c (Rn × (−∞, t̂]) be such that C′ ⊂ {ζ = 1} and spt(ζ) ⊂ C.
Then, for every u ∈ C2;1(Ω) and all (x, t) ∈ C′′,

u(x, t) =

∫ t

0

∫
Rn

(
Φ(x− y, t− s)(∂sζ(y, s) +4yζ(y, s)) + 2DyΦ(x− y, t− s)Dyζ(y, s)

)
· u(y, s) dy ds

+

∫ t

0

∫
Rn

Φ(x− y, t− s)ζ(y, s)
(
∂su(y, s)−4yu(y, s)

)
dy ds.

C′′

C′

C

(x̂, t̂)

R

Rn

Proof. Assume t̂ > r̂ > 0. Define v := ζ · u ∈ C2;1
c (Rn × (−∞, t̂]) and compute

f̃ := (∂t −4)v = (∂t −4)ζ · u+ ζ(∂t −4)u− 2Dζ ·Du.
Set then

ṽ(x, t) :=

∫ t

0

∫
Rn

Φ(x− y, t− s)f̃(y, s) dy ds.

By the definition of f̃ and by (65), both v and ṽ are solutions to the Cauchy problem
(∂t−4)v = f̃ in Rn× (0, t̂), with v = 0 on Rn×{0}. Moreover, we have both ‖v‖L∞ <∞
and ‖f̃‖L∞ < ∞. Therefore, |ṽ(x, t)| ≤ t‖f̃‖L∞ . From Theorem 11.25, it follows that
v = ṽ.

Since (x, t) ∈ C′′, then ζ(x, t) = 1 and

u(x, t) = ζ(x, t)u(x, t) = v(x, t) = ṽ(x, t)

=

∫ t

0

∫
Rn

Φ(x− y, t− s)
(

(∂s −4y)ζ(y, s) · u(y, s) + ζ(y, s) · (∂s −4y)u(y, s)

− 2Dζ(y, s) ·Du(y, s)

)
dy ds.

Moreover,∫ t

0

∫
Rn

Φ(x− y, t− s)Dζ ·Du dy ds =

∫ t

0

∫
B̄(x̂,r̂)

(
divy(Φ(x− y, t− s)Dζ(y, s)u(y, s))
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−DyΦ(x− y, t− s)Dζ(y, s)u(y, s)

− Φ(x− y, t− s)u(y, s)4ζ(y, s)
)

dy ds,

where, for all s < t, ∫
B̄(x̂,r̂)

divy(Φ(x− y, t− s)Dζ(y, s)u(y, s) dy = 0.

�

Theorem 11.29 (Smoothness of solutions to the homogeneous heat equation). Let Ω ⊂
Rn × R be open and u ∈ C2;1(Ω) such that (∂t −4)u = 0 in Ω. Then u ∈ C∞(Ω).

Proof. By the Lemma 11.28, we have for (x, t) ∈ C′′

u(x, t) =

∫∫
C

K(x, t; y, s)u(y, s) dy ds,

where, for (x, t) ∈ C′′, K(x, t; ·) ∈ C∞(C̄). TRUE? Therefore, u is smooth on C′′ by
Theorem 3.3, or Proposition 3.5. -> C′′ is not open! �

Theorem 11.30 (Quantitative smoothness). Let Ω ⊂ Rn × R be an open set. For every
α ∈ Nn, ` ∈ N, there exists Cα,` ∈ R such that, for every u ∈ C∞(Ω) with (∂t −4)u = 0
in Ω, if C(x, t; r) ⊂ Ω, then

(78) sup
C(x,t;r/2)

∣∣∣∣ ∂|α|∂xα
∂`

∂t`
u

∣∣∣∣ ≤ Cα,`
r|α|+2`+n+2

‖u‖L1(C(x,t;r)).

Proof. From Lemma 11.28 we get that, if u ∈ C∞(C(0, 0; 1)), then, for every (x, t) ∈
C(0, 0; 1/2),

u(x, t) =

∫∫
C(0,0;1)

K(x, t; y, s)u(y, s) dy ds,

where K ∈ C∞(C(0, 0; 1/2)× C(0, 0; 1)). By Proposition 3.5, or Theorem 3.3, for every
(x, t) ∈ C(0, 0; 1/2) we have

Dα,`
x,tu(x, t) =

∫∫
C(0,0;1)

Dα,`
x,tK(x, t; y, s)u(y, s) dy ds.

Hence, if we take as constants

Cα,` = sup{|Dα,`
x,tK(x, t; y, s)| : (x, t) ∈ C(0, 0; 1/2), (y, s) ∈ C(0, 0; 1)},

we obtain (78) in this specific case.
In the general case, if (x̂, t̂) ∈ Ω and r̂ > 0 are such that C(x̂, t̂; r̂) ⊂ Ω, and if

u ∈ C∞(Ω) is such that (∂t −4)u = 0 in Ω, then the function

û(x, t) := u(x̂+ r̂x, t̂+ r̂2t)

is such that (∂t −4)u = 0 in C(0, 0; 1). Therefore, for every (x, t) ∈ C(0, 0; 1/2),

|Dα,`
x,tu(x̂+ r̂x, t̂+ r̂2t)|r̂|α|+2` = |Dα,`

x,t û(x, t)|

≤ Cα,`
∫∫

C(0,0;1)

û(y, s) dy ds

= Cα,`

∫∫
C(0,0;1)

u(x̂+ r̂y, t̂+ r̂2s) dy ds

= Cα,`

∫∫
C(x̂,t̂;r̂)

u(ȳ, s̄)
dȳ

r̂n
ds̄

r̂2
.

Hence, we conclude with (78). �

Remark 11.31. Notice that this smoothness result tells us that time cannot be inverted!
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§11.13. Energy Methods.

Lemma 11.32. Let U ⊂ Rn open and bounded with C1 boundary ∂U , and let T > 0. For
u : UT → C define eu : [0, T ]→ R,

eu(t) =

∫
U

|u(x, t)|2 dx,

whenever it is well defined. If u ∈ C2;1(ŪT ) is such that (∂t − 4)u = 0 in UT , then
eu ∈ C1([0, T ]) and

ėu(t) = 2

∫
∂U

uDu · νU dS − 2

∫
U

|Du|2 dx.

If u = 0 on ∂U × [0, T ], then ėu(t) ≤ 0 and so, et is decreasing.

Proof. Since U is bounded and u is continuous on Ū , then ‖u‖L∞(ŪT ) < ∞. Since U is
bounded, then constants belong to L2(U). Therefore, by Theorem 3.3, eu ∈ C1((0, T ))
and

ėu(t) = 2

∫
U

∂tu(x, t)u(x, t) dx

= 2

∫
U

4u(x, t)u(x, t) dx

= 2

∫
∂U

Du(x, t) · νU (x) dS(x)− 2

∫
U

|Du(x, t)|2 dx.

�

Theorem 11.33 (Uniqueness by Energy methods). Let T > 0 and U ⊂ Rn be an open,
bounded subset with C1 boundary ∂U . Let f ∈ C0(UT ) and g ∈ C0(ΓT ). Then there do
not exist two distinct solutions in C2;1(ŪT ) to

(79)

{
(∂t −4)u = f in UT ,
u = g on ΓT .

Proof. Suppose there are two solutions u1, u2 ∈ C2;1(ŪT ) to (79). Then w = u1 − u2 ∈
C2;1(ŪT ) solves (79) with f = 0 and g = 0. By Lemma 11.32, 0 = ew(0) ≥ ew(t) =∫
U
|w(x, t)|2 dx ≥ 0 for all t > 0. It follows that w = 0 and thus u1 = u2. �

§11.14. Backward uniqueness.

Theorem 11.34 (Backward uniqueness). Let T > 0 and U ⊂ Rn be an open, bounded
subset with C1 boundary ∂U . Let g ∈ C0(∂U× [0, T ]). Suppose that u1, u2 ∈ C2(ŪT ) solve
the Cauchy problem

(80)

{
(∂t −4)u = 0 in UT ,
u = g on ∂U × [0, T ].

If u1(x, T ) = u2(x, T ) for all x ∈ U , then u1 = u2 in UT .

Proof. Take w = u1 − u2 ∈ C2(ŪT ), which solves (80) with g = 0. By the Lemma 11.32,

ew(t) =

∫
U

|w(x, t)|2 dx;

ėw(t) = 2

∫
U

|Dw(x, t)|2 dx;

ëw(t) = [...] = 4

∫
U

|4w(x, t)|2 dx.

Moreover, using the Hölder inequality,∫
U

|Dw(x, t)|2 dx =

∫
U

Dw(x, t) ·Dw(x, t) dx

= −
∫
U

4w(x, t) · w(x, t) dx
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≤
(∫

U

|4w(x, t)|2 dx

)1/2

·
(∫

U

|w(x, t)| dx
)1/2

.

Hence,

ėw(t)2 ≤ ëw(t) · ew(t).

Suppose that ew is not zero on [0, T ]. Let (a, b) ⊂ [0, T ] be a maximal interval where
ew > 0. Then ew(a) = 0. By Lemma 11.35, for all [t1, t2] ⊂ (a, b),

ew(1/2t1 + 1/2t2) ≤ ew(t1)1/2ew(t2)1/2.

Taking the limit to t1 → a and t2 → b we obtain ew(
a+ b

2
) = 0, in contradiction with

ew > 0 on (a, b). We conclude that ew = 0 on [0, T ]. �

Lemma 11.35. Let I ⊂ R be an interval and e : I → (0,+∞) be a C2 function with
ė ≤ deė. Then, for every t1 < t2 belonging to I, and every τ ∈ (0, 1),

(81) e((1− τ)t1 + τt2) ≤ e(t1)1−τe(t2)τ .

Proof. Set f(t) = log(e(t)), which is well defined because e(t) > 0. Then f ′(t) = ė(t)
e(t)

and

f ′′(t) = − 1

e(t)2
ė(t)2 +

ë(t)

e(t)
≥ −ëe+ ëe

e2
= 0.

Therefore f is convex. From the convexity of f , we get (81). �
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12. Wave Equation

§12.1. The wave operator. Let U ⊂ Rn open and I ⊂ R an open interval. For u :
U × I → C, we call

• the (homogeneous) wave equation ∂2u
∂t2
−4u = 0 in U × I;

• the nonhomogeneous wave equation ∂2u
∂t2
−4u = f in U×I, for some f : U×I → C.

A common abbreviation is to denote the wave operator by

�w = ∂2
t −4.

§12.2. Symmetries of �. The wave operator � is a linear homogeneous hyperbolic
differential operator of order 2.

Define v(x, t) = u(Ax+ a,Bt+ b) with A ∈ GL(n), a ∈ Rn, B, b ∈ R with AAT = λ2Id.
Then

�v = (B2∂2
t u− λ24u)(Ax+ a,Bt+ b)

[If B2 = λ2:] = λ2�u(Ax+ a,Bt+ b).

Exercise 12.1. Compute �u for u(x, t) = exp((a + bi) · x + φt), where a, b ∈ Rn and
φ ∈ R. ♦

Exercise 12.2. Show that � is invariant under the Lorentz group of transformations.
Recall that the Lorentz group is the group of linear automorphisms of the Minkowski
space. More explicitely, if M is the (n+ 1)× (n+ 1) matrix

M =

(
Id 0
0 −1

)
,

then the Minkowski space is (Rn × R,M) and the Lorentz group is made of matrices
A ∈ GL(Rn × R) such that ATMA = M .

Hint. If it seems too hard, try to solve the exercise at leas for n = 1. ♦

§12.3. Examples. For a, b ∈ C, consider the following functions ua,b : R× R→ C,

ua,b(x, t) = exp(ax+ bt),

Exercise 12.3. For which a, b ∈ C we have �ua,b = 0?
Hint: a = b or a = −b. ♦

Exercise 12.4. For which a, b ∈ C we have ua,b 1-periodic (i.e., ua,b(0) = ua,b(1)) and
�ua,b = 0?

Hint: a, b ∈ 2πiZ with a = b or a = −b. ♦

Exercise 12.5. For every k ∈ N and ` > 0, find u : [0, `]× R→ R such that
(1) �u = 0,
(2) u(0, t) = u(`, t) = 0 for all t, and
(3) there are 0 ≤ x0 < x1 < · · · < xk ≤ ` such that u(xj , t) = 0 for all j and all t.

These functions are the Harmonics of the string pinched at the two ends. ♦

Exercise 12.6. Let c ∈ C. Find u : Rn × R→ C such that

�u = cu.

♦

§12.4. Finite propagation speed.

Theorem 12.7 (Finite propagation speed). Let U ⊂ Rn be open, x̂ ∈ U and R > 0.
Define

K(x̂, R) = {(x, t) ∈ Rn × [0, R] : |x| ≤ R}.
Suppose B̄(x̂, R) ⊂ U and that u ∈ C∞(U × [0, R]) is such that �u = 0 in U × (0, R), and
u = ∂tu = 0 on U × {0}. Then u = 0 in K(x̂, R).
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Proof. Fix t ≥ 0, define

E(t) =
1

2

∫
B(x̂,R−t)

(|∂tu(x, t)|2 + |Du(x, t)|2) dx.

Then, if t ∈ (0, R),

∂tE(t) =
1

2

d

dh

∣∣∣∣
h=0

(∫
B(x̂,R−t−h)

(|∂tu(x, t)|2 + |Dxu(x, t)|2) dx

+

∫
B(x̂,R−t)

(|∂tu(x, t+ h)|2 + |Dxu(x, t+ h)|2) dx

)
=

1

2

(
−
∫
∂B(x̂,R−t)

(|∂tu(x, t)|2 + |Dxu(x, t)|2) dS(x)

+

∫
B(x̂,R−t)

(2∂tu∂
2
t u+ 2DuD∂tu) dx

)
=

∫
∂B(x̂,R−t)

(
− |∂tu|

2

2
− |Du|

2

2
+ ∂tuDu · ν

)
dS(x)

(∗)
≤ −

∫
∂B(x,R−t)

(|∂tu| − |Du|)2 dS ≤ 0,

where we have used in (∗) that

(|∂tu| − |Du|)2 = |∂tu|2 + |Du|2 − 2|∂tu| · |Du| ≤ |∂tu|2 + |Du|2 − 2|∂tu| · |Du · ν|,

because |ν| = 1. It follows that 0 ≤ E(t) ≤ E(0) = 0. So, u is constant in K(x̂, R). �

Remark 12.8. Notice that we actually only need u constant in B(x̂, R) at time 0 to
obtain that u is constant in K(x̂, R).

Exercise 12.9. Let x̂ ∈ Rn and R > 0. Prove the following uniqueness result: if u1, u2 ∈
C2(K(x̂, R)) are such that �u1 = �u2 in K(x̂, R) and u1 = u2 on K(x̂, R) ∩ Rn × {0},
then u1 = u2. ♦

§12.5. Uniqueness of solution to the wave equation.

Theorem 12.10 (Uniqueness of solution to the wave equation). Let U ⊂ Rn be an open
set with C1 boundary ∂U , and fix T > 0. Let f ∈ C0(UT ), g ∈ C0(ΓT ), and h ∈ C0(U).
Then there is at most one solution in C2(ŪT ) to

(82)


�u = f in UT ,
u = g on ΓT ,

∂tu = h on U × {0}.

Proof. As usual, if u1, u2 ∈ C2(Ū × [0, T ]) solve (82), then their difference w = u2 − u1

solve the same problem with f = 0, g = 0, and h = 0. Define

E(t) =

∫
U

(∂tw(x, t)2 + |∇w(x, t)|2) dx.

Then

E′(t) =

∫
U

(2∂tw∂
2
tw + 2∇w∇∂tw) dx

= 2

∫
U

∂tw∂
2
tw +

∫
∂U

∂tw∇w · νU dS(x)−
∫
U

4w∂tw dx

= 0,

because ∂tw = 0on ∂U for all t (because w = 0 on ∂U × [0, T ]), and because ∂2
tw = 4w

on U × (0, T ). Therefore, E is constant. Since E(0) = 0, then E ≡ 0. It follows that w is
constant, and thus 0 since w = 0 on U × {0}. �
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§12.6. Solution by spherical means: case n = 1, d’Alambert’s formula. We
consider the case n = 1. We will solve the PDE

(83)

{
�u = 0 in R× (0,+∞),

u = g, ∂tu = h on R× {0},

with g and h given functions R→ C. Before we give the full statement that we can prove
at the moment, we will see how to find such a formula. So, we forget about the regularity
of u, or, in other words, we assume that u is C∞ (or C2, which is enough to justify our
reasoning).

First, we notice that we can rewrite (83) as

(∂t + ∂x)(∂t − ∂x)u = 0.

Therefore, if v = ∂tu− ∂xu, then v solves the transport equation (25) (with b = 1):{
∂tv + ∂xv = 0 in R× (0,+∞),

v = h− g′ on R× {0}.

If u is C2, then v is C1 and we know that

v(x, t) = v(x− t, 0) = h(x− t)− g′(x− t).

Next, u solves ∂tu − ∂xu = v in R × (0,+∞). By the solution to the nonhomogeneous
transport equation given by Theorem 9.1 (with b = −1 and f = v), we have

u(x, t) = u(x+ t, 0) +

∫ t

0

v(x− (r − t), r) dr

= g(x+ t) +

∫ t

0

(h(x− r + t− r)− g′(x− r + t− r)) dr

= g(x+ t+
g(x+ t− 2r)

2

∣∣∣∣t
0

+

∫ t

0

h(x+ t− 2r) dr

[r̄ = x+ t− 2r] =
1

2
(g(x+ t) + g(x− t))−

∫ x−t

x+t

h(r̄)
dr̄

2

=
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(r) dr.

We thus obtain D’Alambert’s formula

(84) u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(r) dr.

Theorem 12.11 (Solution to � = 0 for n = 1). Let g ∈ C2(R) and h ∈ C1(R). Define
u : R× R→ C by D’Alambert’s formula (84). Then

(1) u ∈ C2(R× R);
(2) ∂2

t u− ∂2
xu = �u = 0 in R× R;

(3) for every x̂ ∈ R, u(x̂, 0) = g(x̂) and ∂tu(x̂, 0) = h(x̂).

Moreover, u is the only solution to (83).

Proof. The proof is left as an exercise. Uniqueness is given by Theorem 12.10. �

Exercise 12.12. Prove Theorem 12.11. ♦

Exercise 12.13. Try to solve the nonhomogeneous version of (83), that is,{
�u = f in R× (0,+∞),

u = g, ∂tu = h on R× {0},

for some given f . ♦
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Remark 12.14. Solutions to the wave equation given by D’Alambert’s formula (84) are
of the form

u(x, t) = F (x+ t) +G(x− t),
with F,G ∈ C2(R). The two functions represent a forward-moving wave and a backward-
moving wave. Can you say which is which?

Remark 12.15. The solutions we have found with D’Alambert’s formula (84) extend to
negative time!

Remark 12.16. The solutions we have found with D’Alambert’s formula (84) are not
C∞ smooth if g and h are not C∞. This is different from the other equations we have
studied so far. Can you spot the difference in the equation? In fact, the highest order
part in the Laplace and in the heat equations is the laplacian, while here the whole � is
homogeneous of order 2.

Remark 12.17. For n > 1, we can define ũ(x, t) = u(x1, t), where u is a solution in
dimension 1 to the wave equation. It follows that ũ is a solution to the wave equation in
Rn × R. Therefore, we have found non-smooth solutions to �u = 0 in all dimensions!

§12.7. A Reflexion method: solution on the half-line. We want to solve the PDE

(85)


�u = 0 in R+ × (0,+∞),

u(x, 0) = g(x), ∂tu(x, 0) = h(x) ∀x ∈ R+,

u(0, t) = 0 ∀t > 0.

This PDE represent a vibrating string that is pinched at one end and infinite in the other
direction. A solution is given in the following Theorem 12.18, whose proof is a direct
calculation. The formula (86) is obtained by a reflection method, that is, we extend the
problem (85) to a PDE on the whole line R by taking

ũ(x, t) =

{
u(x, t) if x ≥ 0,

−u(−x, t) if x ≤ 0;

g̃(x) =

{
g(x) if x ≥ 0,

−g(−x) if x ≤ 0;

h̃(x) =

{
h(x) if x ≥ 0,

−h(−x) if x ≤ 0.

Then one can convince themselves that ũ solves the 1D wave equation and thus, we can
take ũ as given from the D’Alambert’s formula (84). From there, we can obtain (86).

Theorem 12.18. Let R+ = (0,+∞). Let g ∈ C2(R̄+) and h ∈ C1(R̄+) be such that
g(0) = h(0) = g′′(0) = 0. The function u : R+ × [0,+∞)→ C,

(86) u(x, t) =

{
1
2
(g(x+ t) + g(x− t)) + 1

2

∫ x+t

x−t h(y) dy if 0 ≤ t ≤ x,
1
2
(g(x+ t)− g(x− t)) + 1

2

∫ x+t

−x+t
h(y) dy if 0 ≤ x ≤ t,

belongs to C2(R+ × (0,+∞)) ∩ C0(R̄+ × [0,+∞)) and it is THE solution to

(87)


�u = 0 in R+ × (0,+∞),

u(x, 0) = g(x), ∂tu(x, 0) = h(x) ∀x ∈ R+,

u(0, t) = 0 ∀t > 0.

Proof. Left as an exercise. Uniqueness is given by Theorem 12.10.
Hint. The assumption g′′(0) = 0 implies that g̃ is C2. �

Exercise 12.19. Prove Theorem 12.18. ♦

Exercise 12.20. For F,G ∈ C2(R), define ũ(x, t) = F (x+ t) +G(x− t). Then we know
that �ũ, see Remark 12.14. For which F and G we have ũ(0, t) = 0 for all t? Solve (87)
finding the correct F and G. ♦
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Exercise 12.21. Solve the string problem
�u = 0 in [0, 1]× (0,+∞),

u(x, 0) = g(x), ∂tu(x, 0) = h(x) ∀x ∈ [0, 1],

u(0, t) = u(1, t) = 0 ∀t > 0.

You need to find some conditions on g and h to make u of class C2: it is part of the
exercise.

Next, for every n ∈ N, find un ∈ C2([0, 1]× R) such that �un = 0 and un(k/n, t) = 0
for all k ∈ {1, . . . , n}. These functions un are called harmonics of the string. ♦

§12.8. Spherical means: Euler–Poisson–Darboux equation.

Lemma 12.22 (Euler–Poisson–Darboux equation). Let n ≥ 2, m ≥ 2, u ∈ Cm(Rn ×
[0,+∞)), g, h ∈ Cm(Rn). Suppose

(88)

{
∂2
t u−4u = 0 in Rn × (0,+∞),

u = g, ∂tu = h on Rn × {0}.
Referring to 6, set U(x; r, t) = ψu(t, x; r), G(x; r) := ψg(x, r), H(x; r) = ψh(x; r). Here
ψ(·) is defined in (16). Then U(x; ·) ∈ Cm([0,+∞)× [0,+∞)) and

(89)

{
∂2
tU − ∂2

rU − n−1
r
∂rU = 0 in (0,+∞)× (0,+∞),

U = G, ∂tU = H on (0,+∞)× {0}.

Proof. The regularity of all functions U , G and H is proven in Lemma 6.1. To show (89),
we just need to perform the following computations, using again Lemma 6.1.

∂rψu(x, t; r) =
r

n
φ4u(x, t; r)

(88)
=

r

n
φ∂2

t u
(x, t; r)

=
r

n
∂2
t φu(x, t; r),

∂2
rψu(x, t; r) =

1

n
∂2
t φu +

r

n
∂2
t

(n
r

(ψu − φu)
)

= ∂2
t ψu +

1− n
n

∂2
t φu

= ∂2
t ψu +

1− n
n

(n
r
∂rψu

)
= ∂2

t ψu +
1− n
r

∂rψu.

�

§12.9. Solution by spherical means: case n = 3. Here we show how to obtain
Kirchhoff’s formula (90), where we can assume s = 0 without loss of generality by §12.2.

So, let u ∈ C2(R3 × [0,+∞)) be such that (94) holds, that is{
∂2
t u−4u = 0 in R3 × (0,+∞),

u = g, ∂tu = h on R3 × {0}.
Define U , G and H as in Lemma 12.22 and then set

Ũ(x; r, t) = rU(x; r, t), G̃(x; r) = rG(x; r), H̃(x; r) = rH(x; r).

Then a direct computation shows that, for each x ∈ R3,{
∂2
t Ũ − ∂2

r Ũ = 0 for r, t > 0

Ũ(x; r, 0) = G̃(x; r), ∂tŨ(x; r, 0) = H̃(x; r) for r > 0.

So, for each x ∈ R3, the function U(x; ·, ·) solves the pinched string problem §12.7. Since
the solution to the pinched string problem §12.7 is the only one, we obtain, for r ∈ (0, t),

Ũ(x; r, t) =
1

2
(G̃(x; r + t)− G̃(x; t− r)) +

1

2

∫ r+t

−r+t
H̃(x; s) ds.
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So,

u(x, t) = lim
r→0

U(x; r, t) = lim
r→0

Ũ(x; r, t)

r

= lim
r→0

(
G̃(x; r + t)− G̃(x; t− r)

2r
+−
∫ t+r

t−r
H̃(x; s) ds

)
= ∂rG̃(x; r)|r=t + H̃(x; t)

= (G(x; t) + t∂rG(x; r)|r=t) + tH(x; t)

(19)
= −
∫
∂B(x,t)

g(y) dS(y) +
t2

3
−
∫
B(x,t)

4g(y) dy + t−
∫
∂B(x,t)

h(y) dS(y)

= −
∫
∂B(x,t)

(
g(y) + t∇g(y) · y − x|y − x| + th(y)

)
dS(y)

= −
∫
∂B(x,t)

(g(y) +∇g(y) · (y − x) + th(y)) dS(y).

We have thus obtained the Kirchhoff’s formula.

Theorem 12.23 (Kirchhoff’s formula). Let u ∈ C2(R3 × [0,+∞)) be such that �u = 0
in R3 × (0,+∞). Then, for every s ≥ 0 and every t > 0,

(90) u(x, s+ t) = −
∫
∂B(x,t)

(u(y, s) +∇yu(y, s) · (y − x) + t∂su(y, s)) dS(y).

Vice-versa, let g ∈ C2(R3) and h ∈ C1(R3), and define

(91) u(x, t) = −
∫
∂B(x,t)

(g(y) +∇yg(y) · (y − x) + th(y)) dS(y).

Then u ∈ C2(R3 × [0,+∞)) and u is a solution to

(92)

{
�u = (∂2

t −4)u = 0 in R3 × (0,+∞),

u = g, ∂tu = h on R3 × {0}.

Proof. The second part of the theorem, that is, that the function (93) is of class C2 and
that it solves the problem (93), follows from Lemma 6.1 and direct computations.

The first part of the theorem, that is, that every solution to �u = 0 in C2(R3×[0,+∞))
satisfies Kirchhoff’s formula (90), is the result of the discussion before the theorem. �

Remark 12.24. Notice that the integral in (90) is supported on the sphere!

§12.10. Solution by spherical means: case n = 2.

Remark 12.25. The issue here is that, for n = 2, the Euler–Poisson–Darboux equa-
tion (89) cannot be transformed into a wave equation. (Why?)

Let u ∈ C2(R2 × [0,+∞)) be a solution to the system{
�u = (∂2

t −4)u = 0 in R2 × (0,+∞),

u = g, ∂tu = h on R2 × {0}.
We define ũ ∈ C2(R3×[0,+∞)) by ũ(x1, x2, x3, t) = u(x1, x2, t), g̃ ∈ C2(R3) by g̃(x1, x2, x3) =

g(x1, x2), and h̃ ∈ C1(R3) by h̃(x1, x2, x3) = u(x1, x2). Therefore, ũ solves{
�ũ = (∂2

t −4)ũ = 0 in R3 × (0,+∞),

ũ = g, ∂tũ = h on R3 × {0}.
To avoid confusion, we denote by B3 balls in R3 and by B2 balls in R2. Theorem 12.23
tells us that, denoting by x̃ = (x1, x2, 0) ∈ R3 the lift of the point x = (x1, x2) ∈ R2, then

u(x1, x2, t) = ũ(x1, x2, 0, t) = −
∫
∂B3(x̃,t)

(g(ỹ) + Dg(ỹ) · (ỹ − x̃) + th(ỹ)) dS(ỹ)

(14)
=

1

3ω3t2

∫ t

−t

∫
∂B2(x,

√
t2−s2)

(g(y) + th(y) + Dg(y) · (y − x)) dS(y)
1√

t2 − s2
ds
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=
2

3ω3t2

∫ t

0

∫
∂B2(x,

√
t2−s2)

(g(y) + th(y) + Dg(y) · (y − x)) dS(y)
1√

t2 − s2
ds

[r =
√
t2 − s2] =

2

3ω3t2

∫ t

0

∫
∂B2(x,r)

(g(y) + th(y) + Dg(y) · (y − x)) dS(y)
r√

t2 − r2

dr

r

=
2

3ω3t2

∫ t

0

∫
∂B2(x,r)

(g(y) + th(y) + Dg(y) · (y − x))

(t2 − |y − x|2)1/2
dS(y) dr

=
2

3ω3t2

∫
B2(x,t)

(g(y) + th(y) + Dg(y) · (y − x))

(t2 − |y − x|2)1/2
dy

=
1

2
−
∫
B2(x,t)

g + th+ Dg · (y − x)

(t2 − |y − x|2)1/2
d(y).

Theorem 12.26 (Poisson’s formula). Let u ∈ C2(R2 × [0,+∞)) be such that �u = 0 in
R2 × (0,+∞). Then, for every s ≥ 0 and every t > 0,

u(x, s+ t) =
1

2
−
∫
B2(x,t)

u(y, s) + t∂t(y, s) +∇u(y, s) · (y − x)

(t2 − |y − x|2)1/2
d(y).

Vice-versa, let g ∈ C2(R2) and h ∈ C1(R2), and define

(93) u(x, t) =
1

2
−
∫
B2(x,t)

g(y) + th(y) +∇g(y) · (y − x)

(t2 − |y − x|2)1/2
d(y).

Then u ∈ C2(R2 × [0,+∞)) and u is a solution to

(94)

{
�u = (∂2

t −4)u = 0 in R2 × (0,+∞),

u = g, ∂tu = h on R2 × {0}.

Exercise 12.27. Compute ω3, the volume of the unit ball in R3.
Solution:

ω3 = 2

∫
B2(x,1)

√
1− |x|2 dx

= 2

∫ 1

0

∫ 2π

0

√
1− r2 dθr dr

= 4π

∫ 1

0

r
√

1− r2 dr

[r = sin t] = 4π

∫ π/2

0

sin t cos tdt = [...] =
4π

3
.

♦

§12.11. Solution of the wave equation in all dimensions. For the next theorem,
see [7, Th. 5.15, page 170] or [5, Th. 2.4.2, page 77].

Theorem 12.28 (Odd dimensions). Let n ≥ 3 odd, say n = 2m − 1 for m ≥ 2, or
m = n+1

2
. Let g ∈ Cm+1(Rn), h ∈ Cm(Rn), and define

(95)

u(x, t) =
1

γn

[(
∂

∂t

)(
1

t

∂

∂t

)n−3
2

(
tn−2−

∫
∂B(x,t)

g(y) dS(y)

)

+

(
1

t

∂

∂t

)n−3
2

(
tn−2−

∫
∂B(x,t)

h(y) dS(y)

)]
,

where γn is the product of the odd numbers from 1 to n− 2.
Then u ∈ C2(Rn × [0,+∞) and u is a solution to{

�u = (∂2
t −4)u = 0 in Rn × (0,+∞),

u = g, ∂tu = h on Rn × {0}.

For the next theorem, see [7, Th. 5.17, page 171] or [5, Th. 2.4.3, page 80].
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Theorem 12.29 (Even dimensions). Let n ≥ 2 even, say n = 2m − 2 for m ≥ 2, or
m = n+2

2
. Let g ∈ Cm+1(Rn), h ∈ Cm(Rn), and define

(96)

u(x, t) =
1

βn

[(
∂

∂t

)(
1

t

∂

∂t

)n−2
2

(
tn−
∫
B(x,t)

g(y)

(t2 − |y − x|2)1/2
dS(y)

)

+

(
1

t

∂

∂t

)n−2
2

(
tn−
∫
B(x,t)

h(y)

(t2 − |y − x|2)1/2
dS(y)

)]
,

where βn is the product of the even numbers from 1 to n.
Then u ∈ C2(Rn × [0,+∞) and u is a solution to{

�u = (∂2
t −4)u = 0 in Rn × (0,+∞),

u = g, ∂tu = h on Rn × {0}.
Remark 12.30. Notice that in both theorems 12.28 and 12.29,

m =
⌊n

2

⌋
+ 1.

Exercise 12.31. Recover Kirchhoof’s formula (93) from (95). ♦

Exercise 12.32. Recover Poisson’s formula (93) from (96). ♦

§12.12. Solution to the nonhomogeneous wave equation: Duhamel’s principle.
For the next theorem, see [7, Th. 5.25, page 175] or [5, Th. 2.4.4, page 81].

Theorem 12.33 (Nonhomogeneous equation with null initial data). Let n ≥ 2 and f ∈
Cbn2 c+1(Rn × [0,+∞)). For every s > 0, let us : Rn × [s,+∞) → C be the solution in
C2(Rn × [0,+∞)) to {

�u = (∂2
t −4)u = 0 in Rn × (s,+∞),

u = 0, ∂tu = f(·, s) on Rn × {s}.
Define u : Rn × [0,+∞)→ C by

u(x, t) =

∫ t

0

us(x, t) ds.

Then u ∈ C2(Rn × [0,+∞)) and u is a solution to{
�u = (∂2

t −4)u = f in Rn × (0,+∞),

u = 0, ∂tu = 0 on Rn × {0}.
Exercise 12.34. Prove Theorem 12.33. ♦

Exercise 12.35. Write explicitly u from Theorem 12.33 for n = 2 and n = 3. ♦

Theorem 12.36 (Nonhomogeneous wave equation). Let n ≥ 2 and m =
⌊
n
2

⌋
+ 1. Let

f ∈ Cm(Rn × [0,+∞)), Let g ∈ Cm+1(Rn), and h ∈ Cm(Rn).
Let u0 be the function given by Theorem 12.28 and 12.29, and u1 the function given by

Theorem 12.33. Set u = u0 + u1. Then u ∈ C2(Rn × [0,+∞)) and u is a solution to{
�u = (∂2

t −4)u = f in Rn × (0,+∞),

u = g, ∂tu = h on Rn × {0}.
Exercise 12.37. Prove Theorem 12.36. ♦
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Part 2. Distributions

13. Distributions

Here we run through the fundamentals of the theory of distributions omitting a few
details. The details can be recovered by thinking through this material, or reading Rudin’s
book [11], which I strongly recommend:

• W. Rudin. Functional analysis. Second. International Series in Pure and Applied
Mathematics. McGraw-Hill, Inc., New York, 1991, pp. xviii+424

Another valuable reference is Hörmander’s first book of his series on linear partial
differential operators [9]:

• L. Hörmander. The analysis of linear partial differential operators. I. vol. 256.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences]. Distribution theory and Fourier analysis. Springer-Verlag, Berlin, 1983,
pp. ix+391

Hörmander monograph is one of the most important resources on PDE. The text is has
a very high density, and this can lead to obscurity: if you read it slowly, it will become
crystalline clear!

An even denser reference is Chapter Four of Federer’s book [6]:
• H. Federer. Geometric measure theory. Die Grundlehren der mathematischen Wis-

senschaften, Band 153. Springer-Verlag New York Inc., New York, 1969, pp. xiv+676
There, you can find a more general construction of distributions, where test functions

are smooth functions Ω→ Y , where Ω is an open set in a Banach space and Y is another
Banach space. As for Hörmander, Federer’s style is at times obscure, but extremely pre-
cise, abstract and general. Read it slowly.

Never forget to check out Wikipedia:
• https://en.wikipedia.org/wiki/Distribution_(mathematics)

Finally, the founding father of distributional calculus was Laurent Schwartz3, who won
the Fields medal in 1950 for the reason4:

Developed the theory of distributions, a new notion of generalized func-
tion motivated by the Dirac delta-function of theoretical physics.

He then wrote a beautiful autobiography [12], which I suggest everyone to read:
• L. Schwartz. A mathematician grappling with his century. Transl. from the French

by Leila Schneps. English. Basel: Birkhäuser, 2001.
This is the English translation. I have an Italian translation at home, but the original

is in French. Probably, there is a German translation too.

§13.1. Test Functions. For every set E ⊂ Rn, we define

D(E) = {φ ∈ C∞c (Rn) : spt(φ) ⊂ E}.

If Ω ⊂ Rn is an open set, then D(Ω) is the space C∞c (Ω) of smooth functions Ω → C
with compact support. We call elements of D(Ω) test functions. We write just D for
D(Rn).

We endow D(Ω) with a topology that has the following property: For every sequence
{φj}j∈N ⊂ D(Ω) and φ ∈ D(Ω),

(97) φj
D(Ω)−→ φ ⇔ ∃K b Ω ∀j ∈ N spt(φj) ⊂ K, and

∀α ∈ Nn limj→∞ ‖Dαφj −Dαφ‖L∞ = 0.

Exercise 13.1. We can see D(Ω) as a subspace of D(Rn), but not as a closed subspace.
Why? ♦

3https://en.wikipedia.org/wiki/Laurent_Schwartz
4https://www.mathunion.org/fileadmin/IMU/Prizes/Fields/1950/index.html

https://en.wikipedia.org/wiki/Distribution_(mathematics)
https://en.wikipedia.org/wiki/Laurent_Schwartz
https://www.mathunion.org/fileadmin/IMU/Prizes/Fields/1950/index.html
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§13.2. The topology of test functions. We will use only the In most of the situations,
Property (97) is everything we need to know about the topology of D(Ω). However, the
fact that this notion of convergence descends from a topology, is a non-trivial fact which
needs precise definition of that topology.

There are three ways to construct the topology of test functions. First of all, for
K ⊂ Rn compact, the space D(K) is a Frechét space when endowed with the family of
pseudonorms

‖u‖α = ‖Dαu‖L∞(K), α ∈ Nn.
The first way to construct the topology of D(Ω) is defining the collection β of all convex

balanced sets W ⊂ D(Ω) such that D(K) ∩W is open D(K) for all K ⊂ Ω compact. A
a set W is balanced if λW ⊂ W for all λ ∈ C with |λ| ≤ 1. The collection β induces a
topology τ make of unions of elements of {x + W : x ∈ D(K), w ∈ β}. Then τ makes
D(Ω) into a locally convex topological vector space.

The other two ways are in terms of initial and final topologies:

Definition 13.2 (Initial, or projective, topology). Given a set Y and a family of topolog-
ical spaces {Zi}i∈I and functions fi : Y → Zi. The initial topology or projective topology
induced by the family of functions fi is the coarsest (i.e., smallest) topology in Y that
makes all functions fi continuous.

Definition 13.3 (Final, or inductive, topology). Given a set Y and a family of topological
spaces {Xi}i∈I and functions fi : Xi → Y . The final topology or inductive topology
induced by the family of functions fi is the finest (i.e., largest) topology in Y that makes
all functions fi continuous.

So, we start with the Banach spaces

Cmc (K) = {φ : Rn → C of class Cm with spt(φ) ⊂ K},
where the norm is

(98) ‖φ‖Cm(Ω) = max{‖Dαφ‖L∞(Ω) : |α| ≤ m}.
Then we set

C∞c (K) =
⋂
m∈N

Cmc (K)

endowed with the initial topology induced by the functions C∞c (K) ↪→ Cmc (K); and then

(99) D(Ω) = C∞c (Ω) =
⋃
KbΩ

C∞c (K) =
⋃
KbΩ

⋂
m∈N

Cmc (K),

endowed with the final topology induced by the functions C∞c (K) ↪→ C∞c (Ω).
An equivalent way is to take first

Cmc (Ω) =
⋃
KbΩ

Cmc (K)

endowed with the final topology induced by the functions Cmc (K) ↪→ Cmc (Ω), and then

(100) D(Ω) = C∞c (Ω) =
⋂
m∈N

Cmc (Ω) =
⋂
m∈N

⋃
KbΩ

Cmc (K)

endowed with the initial topology induced by the functions C∞c (Ω) ↪→ Cmc (Ω).

Exercise 13.4. Show that the two topologies coming from (99) and (100) are the same.
♦

§13.3. Continuity of linear operators.

Proposition 13.5. Let Y be a locally convex space and L : D(Ω) → Y linear. Then the
following are equivalent:

(1) L is continuous;
(2) if φj → 0 in D(Ω) then Lφj → 0 in Y ;
(3) the restrictions of L to every C∞c (K) ⊂ D(Ω), for K b Ω, are continuous.

Proof. The equivalence (2)⇔ (3) is clear, as it is clear (1)⇒ (2). The implication (3)⇒
(1) follows from the properties of the topology in D(Ω). See Rudin [11, Thm.6.6]. �
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§13.4. Distributions. A distribution is an element of the dual space D ′(Ω), that is, a
continuous linear functional D(Ω) → C. The topology of D ′(Ω) is the weak* topology:
For every sequence {Aj}j∈N ⊂ D ′(Ω) and A ∈ D(Ω),

Aj
D′(Ω)−→ A ⇔ ∀φ ∈ D(Ω) lim

j→∞
Aj [φ] = A[φ].

We write just D ′ for D ′(Rn).

§13.5. Functions as distributions. To every f ∈ L1
loc(Ω), we associate a distribution

Af ∈ D ′(Ω) defined by, for φ ∈ D(Ω),

Af [φ] =

∫
Ω

f(x)φ(x) dx.

Let’s show that Af is a distribution. Clearly Af is linear. We need to show it is continuous.
If φj → φ in D(Ω), then there is K b Ω with spt(φj) ⊂ K and ‖φj − φ‖L∞(Ω) → 0.
Therefore,

|Af [φj ]−Af [φ]| ≤
∫

Ω

|f(x)||φj(x)− φ(x)| dx ≤
∫
K

|f(x)|dx‖φj − φ‖L∞(Ω) → 0.

This shows that Af is continuous.
The Fundamental Theorem of Calculus implies that, if f, g ∈ L1

loc(Ω) are such that
Af = Ag as distributions, then f = g almost everywhere, that is, f = g in L1

loc(Ω). We
thus have an inclusion L1

loc(Ω) ↪→ D(Ω).
We can say more about this inclusion: it is continuous. Here we consider on L1

loc(Ω)
the topology of local convergence in L1, that is, fj → f in L1

loc(Ω) if and only if, for every
K b Ω, we have fj |K → f |K in L1(K), i.e., ‖fj−f‖L1(K) → 0. So, if fj → f in L1

loc(Ω) and
φ ∈ D(Ω), |Afj [φ]−Af [φ]| ≤

∫
spt(φ)

|fj(x)−f(x)||φ(x)| dx ≤ ‖fj−f‖L1(spt(φ))‖φ‖L∞ → 0.

Exercise 13.6. Find a sequence fj ∈ L1
loc(R) such that ‖fj‖L1([0,1]) = 1 but Afj → 0 in

D ′(R).
Hint: Take fj(x) =

∑2n

j=1(−1)j1((j−1)/2n,j/2n)(x). Then
∫ 1

0
|fj(x)|dx = 1. If φ ∈

D(Ω), then there is L such that |φ(x)− φ(y)| < L|x− y| for every x, y ∈ R.∣∣∣∣∫
R
fj(x)φ(x) dx

∣∣∣∣ =

∣∣∣∣∣
2n∑
j=1

(−1)j
∫ j/2n

(j−1)/2n
φ(x) dx

∣∣∣∣∣
=

∣∣∣∣∣∣
2n−1∑
j=1

∫ 1/2n

0

(
−φ
(
j − 1

2n−1
+ x

)
+ φ

(
j − 1

2n−1
+

1

2n
+ x

))
dx

∣∣∣∣∣∣
≤

2n−1∑
j=1

∫ 1/2n

0

L

2n
dx

=
L

2n
2n−1

2n
=

L

2n+1
.

♦

Exercise 13.7. Show that fj → 0 weakly* in L1
loc(Rn), if and only if Afj → 0 in D ′(Rn).

The weak* convergence is
∫
R fjg dx→ 0 for all g ∈ L∞(Rn) with compact support. ♦

After this, we can denote still by f the distribution Af , that is,

L1
loc(Ω) ⊂ D ′(Ω).

Exercise 13.8. Let {uk}k∈N ⊂ C∞(Ω) be a sequence of harmonic functions and suppose
that uk → A in D ′(Ω). Show that A is a harmonic function. ♦
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§13.6. Measures as distributions. Let µ be a Radon measure on Ω: µ ∈ Rad(Ω). Then
we define the distribution

Aµ[φ] =

∫
Ω

φ(x) dµ(x).

As we saw with functions, the map µ 7→ Aµ is a continuous embedding:

Rad(Ω) ⊂ D ′(Ω).

Examples of Radon measures:
(1) The Dirac delta centered at x ∈ Ω is the measure δx defined by: δx(E) = 1

if x ∈ E, δx(E) = 0 if x /∈ E. On test functions, the Dirac delta acts as an
evaluation: δx[φ] = φ(x).

(2) If E ⊂ Ω closed or open, the measure L n|E is Radon.
(3) Integration over embedded submanifolds of Ω are Radon measures.

§13.7. Order of a distribution. A distribution A ∈ D ′(Ω) has order (up to) N is there
is C <∞ with

∀φ ∈ D(Ω), A[φ] ≤ C‖φ‖CN (Ω).

Recall that the norm ‖φ‖CN (Ω) was defined in (98). Notice that if A has order N , then it
has also order N + 1. We say that A has order exactly N if it has order N but not order
N − 1.

Proposition 13.9. A linear functional A : D ′(Ω)→ C is continuous, i.e., a distribution,
if and only if it has locally finite order, that is, for every K b Ω there are N ∈ N and
C <∞ such that, for every φ ∈ D(Ω) with spt(φ) ⊂ K, A[φ] ≤ C‖φ‖CN (Ω).

Proof. In this proof, we use two key facts. First, the norms defined in (98) satisfy
‖φ‖CN (Ω) ≥ ‖φ‖Ck(Ω) whenever k ≤ N . Second, if we fix k ∈ N and K b Ω, then
A is a continuous linear functional (D(K), ‖ · ‖Ck(K)) → C, that is, there is Ck such
that A[φ] ≤ Ck‖φ‖Ck(Ω) for every φ ∈ D(K). This follows from the very definition of
distribution.

So, arguing by contradiction, assume our proposition is false, that is, there is K b Ω
such that, for every N ∈ N there is φN ∈ D(Ω) with spt(φN ) ⊂ K, and A[φN ] ≥
N‖φN‖CN (K). We have reached a contradiction: for every N ≥ k, we should also
have N‖φN‖Ck(Ω) ≤ N‖φN‖CN (Ω) ≤ A[φN ] ≤ Ck‖φN‖Ck(Ω). Since A[φN ] 6= 0, then
‖φN‖Ck(Ω) 6= 0, and thus we get N ≤ Ck for all N ≥ k: E.

We conclude that such a sequence {φN}N cannot exists. �

Exercise 13.10. Show that, if A ∈ D ′(Ω) has finite order N , then A extends as a
continuous linear operator from D(Ω) to CN (Ω). ♦

§13.8. Distributions of order 0. If X is a topological space, we define Cc(X) as the
space of continuous functions X → C with compact support endowed with the L∞ norm.
The closure of Cc(X) in C(X) is C0(X), which is the space of continuous functions van-
ishing “at infinity”, that is,

C0(X) = {f ∈ C(X) : for every ε > 0 the set {|f | ≥ ε} is compact}.
The space C0(X) is a Banach space when endowed with the L∞ norm. Its (topological)
dual C0(X)′ is also a Banach space when endowed with the operator norm ‖ξ‖C0(X)′ =
sup{ξ[φ] : φ ∈ C0(X), ‖φL∞ ≤ 1}.

We define Rad(X;C) as the space of all C-valued Radon measures: the precise definition
goes as follows. Let B(X) be the σ-algebra of all Borel sets. A positive Radon measure
on X is a measure λ : B(X)→ [0,+∞] such that (see [8, page 212]):

(1) λ is outer regular on all Borel sets, that is, if E ∈ B(X), then

λ(E) = inf{λ(U) : E ⊂ U, U open};
(2) λ is inner regular on all open sets, that is, if E ⊂ X is open, then

λ(E) = sup{λ(K) : K ⊂ E, K compact};
(3) λ is finite on compact sets, that is, λ(K) <∞ for all K ⊂ X compact.
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We denote by Rad(X; [0,+∞]) the space of all positive Radon measures on X. A complex-
valued or real-valued Radon measure is a Borel measure µ : B(X)→ K with K ∈ {R,C}
whose total variation is |µ| ∈ Rad(X; [0,+∞]). We call the space of these measures
Rad(X;K) for K ∈ {R,C}. In fact, if µ ∈ Rad(X;K), then |µ|(X) < ∞. Moreover, if
µ ∈ Rad(X;R), then there are µ+, µ− ∈ Rad(X; [0,+∞)) such that µ = µ+ − µ−. If
µ ∈ Rad(X;C), then there are µr, µi ∈ Rad(X;R) such that µ = µr + iµi.

Recall the following result (see [8, Thm 7.17, page 223])

Theorem 13.11 (Riesz Representation Theorem). Let X be a topological space that is
locally compact5 and Hausdorff6. For µ ∈ Rad(X;C) and f ∈ C0(X), define Iµ(f) =∫
X
f dµ. Then Iµ is an element of the dual C0(X)′ and the map µ 7→ Iµ is an isometric

equivalence of Rad(X;C) with C0(X)′.

Proposition 13.12. A distribution A ∈ D ′(Ω) has order zero if and only if it is a Radon
measure.

Proof. We already know that Radon measures are distributions of order zero. Let’s prove
the other implication.

If A ∈ D ′(Ω) has order zero, then there is C such that A[φ] ≤ C‖φ‖L∞ for all φ ∈
D(Ω). Since D(Ω) is dense in C0(Ω), it follows that A continuously extends to a linear
operator C0(Ω)→ C. By Riesz Representation Theorem 13.11, there is a Radon measure
µ ∈ Rad(Ω;C) such that A = Iµ. This means for us that A is a Radon measure. �

Exercise 13.13. Show that D(Ω) is dense in (C0(Ω), ‖ · ‖L∞). ♦

§13.9. Distributions of order 1. Here are some examples of distributions of order 1.
(1) A[φ] = ∂xφ(0);
(2) A[φ] =

∫
∂B(x,r)

∇φ(y) · (y−x)
r

dS(y).
(3) In general, if Σ ⊂ Rn is a smooth submanifold, v : Σ → Rn a smooth vector

field, and dS is the surface measure on Σ, then A[φ] =
∫

Σ
∇φ(y) · v(y) dS(y) is a

distribution of order 1.
(4) For example,

Ax,r[φ] = −
∫
∂B(x,r)

∇φ(y) · (y − x) dy.

(5) the distribution A[φ] =
∫ 1

0
φ′(x) dx is a distribution of order one on R: |A[φ]| ≤∫ 1

0
|φ′(x)| dx ≤ ‖φ‖C1 . However, A is actually of order zero: |A[φ]| = |φ(1) −

φ(0)| ≤ 2‖φ‖C0 .

§13.10. Principal value. The function f : R\{0} → R, f(x) = 1
x
, is not integrable in a

neighborhood of 0. For this reason, we cannot see it as a distribution on R, although it is
a distribution on R\{0}, because f ∈ L1

loc(R\{0}). However, we can define a distribution
on R as follows:

(101) D(R) 3 φ 7→ lim
ε→0

∫
R\[−ε,ε]

φ(x)

x
dx = p.v.

∫
R

φ(x)

x
dx

If spt(φ) ⊂ [−a, a], then∫
R\[−ε,ε]

φ(x)

x
dx =

∫
[−a,a]\[−ε,ε]

φ(x)− φ(0)

x
dx.

Since
∣∣∣φ(x)−φ(0)

x

∣∣∣ ≤ ‖φ′‖L∞ , then the latter integral converges as ε→ 0:

p.v.
∫
R

φ(x)

x
dx = lim

ε→0

∫
[−a,a]\[−ε,ε]

φ(x)− φ(0)

x
dx =

∫
[−a,a]

φ(x)− φ(0)

x
dx.

So, (101) defines a distribution by Proposition 13.9.

5locally compact: for every x ∈ X and every U ⊂ X open with x ∈ U there exists V ⊂ U compact
with x ∈ interior(K)

6Hausdorff: for every x, y ∈ X distinct there are U, V ⊂ X open such that x ∈ U , y ∈ V and
U ∩ V = ∅.
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§13.11. Adjoint operators.

Proposition 13.14. Let Ω1 and Ω2 be open subsets of Rn. Let Φ : D(Ω1) → D(Ω2)
be a continuous linear operator. Then there is a sequentially7continuous linear operator
Φ∗ : D ′(Ω2)→ D ′(Ω1) such that, for every A ∈ D ′(Ω2) and φ ∈ D(Ω1),

(102) Φ∗A[φ] = A[Φφ].

Proof. For every A ∈ D ′(Ω2), define Φ∗A by (102). Notice that, Φ∗A = A ◦Φ. Therefore,
since both A and Φ are linear and continuous, then Φ∗A is linear and continuous. We
need to show that Φ∗ is continuous. Let Aj → A in D ′(Ω2). Then, for every φ ∈ D(Ω1),
we have limj→∞ Φ∗Aj [φ] = limj→∞Aj [Φφ] = A[Φφ] = Φ∗A[φ]. This shows that Φ∗ is
sequentially continuous. �

Proposition 13.14, combined with Proposition 13.5, is the key tool to extend operations
from functions to distributions. We will use it all the time!

§13.12. Derivatives of distributions. If A ∈ D ′(Ω) and α ∈ Nn, define, for every
φ ∈ D(Ω),

(103) DαA[φ] = (−1)|α|A[Dαφ].

Exercise 13.15. Show that, if α ∈ Nn, the function φ 7→ Dαφ is a continuous linear
operator D(Ω)→ D(Ω). ♦

By Exercise 13.15 and Proposition 13.14, the A 7→ DαA is a continuous operator
D ′(Ω)→ D ′(Ω).

Exercise 13.16. Let f ∈ CN (Ω) and φ ∈ D(Ω). Show that, for every α ∈ Nn with
|α| ≤ N , ∫

Ω

Dαf(x)φ(x) dx = (−1)|α|
∫

Ω

f(x)Dαφ(x) dx.

In other words, DαAf = ADαf . ♦

Exercise 13.17. Show that, if A ∈ D ′(Ω), then DαDβA = Dα+βA = DβDαA for all
α, β ∈ Nn. ♦

Distributions are thus infinitely differentiable: this is one of the main features of dis-
tributions. In particular, we have derivatives of every order for each function in L1

loc(Ω).
Exercise 13.16 shows that, if a distribution Af is a function f of class CN , then derivatives
defined by (103) are coherent with derivatives of f .

Proposition 13.18. Let f ∈ L1
loc(R) be such that there is g ∈ L1(R) with DAf = Ag,

i.e., Df = g in distributional sense. Then, for almost every x ∈ R,

f(x) =

∫ x

−∞
g(y) dy.

Consequently, up to changing f on a set of measure zero, f is absolutely continuous and
f ′ = g. In particular, if f and g are continuous, then f ∈ C1(R) and f ′ = g.

Proof. The identity DAf = Ag means that, for every φ ∈ D(R),

(104)
∫ ∞
−∞

g(x)φ(x) dx = −
∫ ∞
−∞

f(x)φ′(x) dx.

7Recall that T : X → Y is sequentially continuous if for every xj → x∞ in X we have Txj → Tx∞
in Y . Instead, T is (topologically) continuous if for every open set V ⊂ Y the preimage T−1(V ) is open
in X. In topological spaces, (topological) continuity implies sequential continuity. The converse is false
in this generality.

(A way to recover continuity from convergence is by means of nets, a generalization of sequences:
a sequence in X is a function N → X, a net in X is a function ω → X for some ordinal ω. “Netial”
continuity implies continuity.)

It remains unclear to me if sequential continuity implies continuity in the context of Proposi-
tion §13.11.
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Define

v(x) =

∫ x

−∞
g(y) dy.

We claim that Af = Av. If φ ∈ D(R), then

Av[φ] =

∫ ∞
−∞

v(x)φ(x) dx

=

∫ ∞
−∞

∫ x

−∞
g(y)φ(x) dy dx

[Change of variables] =

∫ ∞
−∞

∫ ∞
0

g(t)φ(t+ s) dsdt

=

∫ ∞
0

∫ ∞
−∞

g(t)φ(t+ s) dt ds

(104)
= −

∫ ∞
0

∫ ∞
−∞

f(t)φ′(t+ s) dtds

= −
∫ ∞
−∞

f(t)(−φ(t)) dt = Af [φ].

where we performed the following change of variables: x = t + s, y = t, dx ∧ dy =
( dt + ds) ∧ dt = ds ∧ dt, and {x ∈ R, y ∈ (−∞, x]} = {y ∈ R, x ∈ [y,+∞)} = {t ∈
R, s ∈ [0,+∞)}. We have thus obtained that Av = Af as distributions, and we know
that this means that f = v almost everywhere (see §13.5), that is, (104). �

Exercise 13.19. Show the following proposition:

Proposition 13.20. Let Ω ⊂ Rn be open and f ∈ C(Ω) a continuous function. Suppose
that, for every j ∈ {1, . . . , n}, there is a continuous function gj ∈ C(Ω) such that DjAf =
Agj , i.e., Djf = gj in distributional sense. Then f ∈ C1(Ω) and Djf = gj.

♦

Exercise 13.21. Let f : R → R be a function with bounded variation. For instance,
the Cantor staircase function. Show that DAf = Aµ, where µ ∈ Rad(R) is the measure
defined by

µ([a, b)) = f(b)− f(a)

for all a, b ∈ R with a < b. For instance, if f is the Cantor staircase function, then we know
that, for almost every x ∈ R, f is differentiable at x and f ′(x) = 0. However, DAf 6= 0.

Hint: see [11, §6.14]. ♦

§13.13. Intermezzo: Banach–Steinhaus Theorem. We will need to cite Banach–
Steinhaus Theorem. Here we see a version of its statement that is less general than the
original, but it is what we will need later on. Before stating the theorem, we fix the terms
used.

A family Γ of linear functions γ : X → Y between topological vector spaces is equicon-
tinuous if for every open neighborhood V of 0 in Y there exists an open neighborhood U
of 0 in X such that γ(U) ⊂ V for all γ ∈ Γ. As as short notation, for Γ ⊂ Lin(X;Y ) and
E ⊂ X, we define

Γ(E) = {γ(x) : γ ∈ Γ, x ∈ E} ⊂ Y.
In the finite-dimensional case, i.e., when both X and Y have finite dimension, equicon-

tinuity is equivalent to boundedness (in the operator norm) and pre-compactness. In the
infinite dimensional case, this is not the case.

A Fréchet space is a topological vector space (X, τ) such that
(1) the topology τ is generated by a complete invariant metric (i.e., a complete dis-

tance function d : X × X → (0,+∞) such that d(x + z, y + z) = d(x, y) for all
x, y, z ∈ X);

(2) X is locally convex, that is, for every U ⊂ X open with 0 ∈ U there exists V ⊂ U
open with 0 ∈ V and V convex.
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A subset E ⊂ X in a topological vector space X is bounded if for every U ⊂ X open
with 0 ∈ U there exists λ > 0 such that E ⊂ λU . This notion of boundedness might look
abstract, but you can easily show the following statement: If E = {xj}j∈N is a convergent
sequence in X, then E is bounded.

Exercise 13.22. Show that, if E = {xj}j∈N is a convergent sequence in X, then E is
bounded. ♦

Theorem 13.23 ((Consequence of) Banach–Steinhaus Theorem). Suppose that X is a
Fréchet space and Y a topological vector space, Γ is a collection of continuous linear maps
from X to Y . If

∀x ∈ X Γ(x) is bounded in Y ,

then Γ is equicontinuous.

See [11, §2.1–§2.6], and also the Wikipedia page.

Corollary 13.24. Let X be a Fréchet space, Y and Z topological vector spaces, and
B : X × Y → Z a bilinear map. Suppose that B is continuous in each entry separately,
i.e., for every x ∈ X the linear map Y → Z, y 7→ B(x, y), is continuous, and for every
y ∈ Y the linear map X → Z, x 7→ B(x, y), is continuous.

If {xj}i∈N ⊂ X and {yj}j∈N ⊂ Y are sequences with limj→∞ xj = x∞ in X and
limj→∞ yj = y∞ in Y , then

(105) lim
j→∞

B(xj , yj) = B(x∞, y∞).

Proof. For j ∈ N ∪ {∞}, define bj : X → Z, bj(x) = B(x, yj). Set Γ = {bj}j∈N∪{∞}.
Since B is continuous in each entry, the functions bj are continuous. If x ∈ X, since Γ(x)
is a sequence in Z convergent to b∞(x), then Γ(x) is bounded. By the Banach–Steinhaus
Theorem 13.23, Γ is equicontinuous.

We are now ready to prove (105). Let U ⊂ Z be a neighborhood of 0 in Z. We want
to show that there is N ∈ N such that

(106) ∃N ∈ N ∀j > N B(xj , yj) ∈ B(x∞, y∞) + U.

As a general fact in topological vector spaces, there is Ũ ⊂ U neighborhood of 0 in Z
such that Ũ − Ũ ⊂ U . Since Γ is equicontinuous, there is V ⊂ X neighborhood of 0 in X
such that Γ(V ) ⊂ Ũ . Since xn → x∞, then there is N ∈ N such that xn − x∞ ∈ V for all
n > N . Up to taking N larger, we have also B(x∞, y∞ − yj) ∈ Ũ for all n > N , because
y 7→ B(x∞, y) is continuous and thus limj→∞B(x∞, y∞− yj) = 0. So, for j > N we have

B(xj , yj)−B(x∞, y∞) = B(xj − x∞, yj)−B(x∞, y∞ − yj)
= bj(xj − x∞)−B(x∞, y∞ − yj) ∈ Ũ − Ũ ⊂ U.

We have thus obtained (106). �

§13.14. Product of distributions. A derivative is usually defined using the Leibniz
rule: ∂(fg) = f∂g + g∂f . The product of two distributions is not well defined... We will
see special situations in which we can multiply two distributions, but there is not a general
product of two distributions.

§13.15. Product of a smooth function and a distribution. If A ∈ D(Ω) and f ∈
C∞(Ω), then we define fA by

(fA)[φ] = A[fφ].

Again, we justify this formula with Proposition 13.14: indeed, the map Φf : φ 7→ fφ is a
continuous linear operator D(Ω) → D(Ω). So, Φ∗fA = A ◦ Φf defines a continuous linear
operator D ′(Ω)→ D ′(Ω).

Proposition 13.25. If fk → f∞ in C∞(Ω) and Ak → A∞ in D ′(Ω), then fkAk → f∞A∞
in D ′(Ω).

Proof. Consider the bilinear map B : C∞(Ω)× D ′(Ω)→ D ′(Ω), B(f,A) = fA. We have
seen that B is continuous in each entry separately. Since C∞(Ω) is a Fréchet space, we
conclude thanks to Corollary 13.24 of the Banach–Steinhaus Theorem. �

https://en.wikipedia.org/wiki/Uniform_boundedness_principle
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Corollary 13.26. If φj → φ∞ in D(Ω) and Aj → A in D ′(Ω), then limj→∞Aj [φj ] =
A[φ∞].

Exercise 13.27. Prove Corollary 13.26 using Proposition 13.25. ♦

Exercise 13.28 (Generalized Leibniz Rule). Show that, if u ∈ D ′(Ω) and f ∈ C∞(Ω),
then, for every α ∈ Nn,

(107) Dα(fu) =
∑
β≤α

(
α

β

)
Dβf ·Dα−βu.

Hint: First of all, understand this formula when u is a smooth function. Then consider
the case |α| = 1 (just one derivative). ♦

§13.16. Locality. We say that two distributions A1, A2 ∈ D ′(Ω) are equal on an open
set ω ⊂ Ω, that is, A1 = A2 in ω, if A1φ = A2φ for all φ ∈ D(ω).

Proposition 13.29. Let U be an open cover of an open set Ω ⊂ Rn and let {Aω}ω∈U

be a collection of distributions with:
(1) Aω ∈ D ′(ω) for all ω ∈ U , and,
(2) Aω1 = Aω2 in ω1 ∩ ω2 for all ω1, ω2 ∈ U .

Then there exists a unique A ∈ D ′(Ω) with A = Aω in ω for all ω ∈ U .

Proof. Let {ψj}j∈N be a partition of unity subordinated to U . More precisely:
(1) ψj ∈ C∞c (Ω) for all j;
(2) for every x ∈ Ω the set {j : ψj(x) 6= 0} is finite;
(3)

∑
j ψj(x) = 1 for all x ∈ Ω;

(4) for every j ∈ N there is ωj ∈ U such that spt(ψj) ⊂ ωj .
We fix the subcover {ωj}j∈N ⊂ U .

Define A : D(Ω) → C as follows: if φ ∈ D(Ω), then A[φ] =
∑
j∈NAωj [ψjφ]. Notice

that, since spt(φ) is compact and the local finiteness of the cover {ωj}j , the sum is a finite
sum.

Clearly A is linear. If φk → 0 in D(Ω), then there is K b Ω with spt(φk) ⊂ K for
all k. So, there is N ∈ N with K ⊂ ⋃Nj=1 ωj and A[φk] =

∑N
j=1 Aωj [ψjφk] for all k. We

conclude that limk→∞A[φk] =
∑N
j=1 limk→∞Aωj [ψj limk→∞ φk] = 0.

By Proposition 13.5, we obtain that A ∈ D ′(Ω).
If ω ∈ U , then, for every φ ∈ D(ω), we have A[φ] =

∑
j∈NAωj [ψjφ] =

∑
j∈NAω[ψjφ] =

Aω[
∑
j∈N ψjφ] = Aω[φ], where we used the fact that spt(ψjφ) ⊂ spt(ψj)∩spt(φ) ⊂ ωj ∩ω,

that Aωj = Aω on ωj ∩ ω, that there is a finite set J ⊂ N such that spt(ψj) ∩ spt(φ) 6= ∅,
and that, for every x ∈ spt(φ),

∑
j∈N ψj(x) =

∑
j∈J ψj(x) = 1.

Finally, we need to show uniqueness. Suppose there is Ā ∈ D ′(Ω) such that Ā = Aω
on ω for every ω ∈ U . Then, for every φ ∈ D(Ω), Ā[φ] = Ā[

∑
j ψjφ] =

∑
j Ā[ψjφ] =∑

j Aωj [ψjφ] = A[φ]. Hence, Ā = A. �

Exercise 13.30. Show that a partition of unity exists for every open cover of an open
subset of Rn. In other words, if Ω ⊂ Rn is open and U is a collection of open subsets of
Ω such that

⋃
U = Ω, then there is a countable family of functions {ψj}j∈N ⊂ C∞c (Ω)

such that
(1) 0 ≤ ψj(x) ≤ 1 for all j and all x ∈ Ω
(2) for every x ∈ Ω the set {j : ψj(x) 6= 0} is finite;
(3)

∑
j ψj(x) = 1 for all x ∈ Ω;

(4) for every j ∈ N there is ωj ∈ U such that spt(ψj) ⊂ ωj .
Moreover, show that, if K ⊂ Ω is compact, then there is a finite set J ⊂ N such that∑
j∈J ψj(x) = 1 for all x ∈ K.
Hint: Rudin has a proof. ♦

Exercise 13.31. Let A ∈ D ′(Ω) and U an open cover of Ω. Show that, if Ā ∈ D ′(Ω) is
such that Ā = A on ω, for every ω ∈ U , then Ā = A.
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The meaning of this exercise is as follows: If we start from some A ∈ D ′(Ω), then we
can localize A to each open subset of some given cover of Ω, and then we can recover A
from Proposition 13.29. ♦

Corollary 13.32. If A ∈ D ′(Ω) is such that for every x ∈ Ω there is ω ⊂ Ω open with
x ∈ ω and A = 0 on ω, then A = 0 on Ω.

Proof. Define U as the open cover of Ω given by the open sets ω ⊂ Ω with A = 0 on ω.
Proposition 13.29 claims that there exists a unique distribution in D ′(Ω) that is equal to
A on each ω ∈ U . Since 0 is one of such distributions, uniqueness implies A = 0. �

Remark 13.33. Corollary 13.32 might look confusionally trivial. To understand it better,
it is useful to think of a situation (outside the world of distributions, of course) where
locality fails. Here is one example.

Consider the space C = {α ∈ Ω1(R2 \ {0}) : dα = 0} of closed 1-forms on the plane
punctured plane. We consider (continuous) linear functionals C → C. Let S1 = {z ∈ R2 :

|z| = 1} the the unit circle. Define A[α] :=
∫
S1 α =

∫ 2π

0
〈α(eit)|ieit〉dt (we identify C with

R2 for notational purposes). Notice that A is not zero: for example, A[xdy − ydx] 6= 0.
Now, we claim that, for every x ∈ R2, there exists ω ⊂ R2 open neighborhood of x

such that A[α] = 0 for all α ∈ C with spt(α) ⊂ ω. Indeed, if x /∈ S1, then we can just
take ω with ω ∩ S1 = ∅. If x ∈ S1, then we can take ω = B(x, 1/2), the ball of radius 1/2
and center x. If α is a closed 1 form on R2 \ {0}, the integral of α over each contractible
loop is 0. So, if spt(α) ⊂ ω, and if y, z ∈ R2 are the two extremal points of the arc S1 ∩ω,
then the integral of α over S1 ∩ ω is equal to the integral of α along another path from y
to z that does not intersect the support of α (such as the boundary of ω itself). It follows
that the integral of α along S1 ∩ ω is zero. This shows the claim.

§13.17. Support of a distribution. The support of A ∈ D ′(Ω) is defined as the com-
plement of the set

Ω \ spt(A) =
⋃
{U ⊂ Ω open, such that Aφ = 0 ∀φ ∈ D(Ω)}.

Proposition 13.34. Let A ∈ D ′(Ω) and φ ∈ D(Ω). If sptφ ⊂ Ω \ sptA, then Aφ = 0.

Proof. Let U = {ω ⊂ Ω : A = 0 in ω}. Then U is a cover of Ω \ sptA, by definition
of support of a distribution. Let {ψj}j∈N be a partition of unity subordinated to U .
Since sptφ is a compact subset of Ω \ sptA, there is N such that φ =

∑N
j=1 ψjφ. So,

Aφ =
∑N
j=1 A[ψjφ] = 0.

We can give another proof using Proposition 13.29: Let V = Ω \ sptA. Then V is
open and U is an open cover of V . By the very definition of U , each restriction Aω of
A to ω ∈ U is zero. By Proposition 13.29, these Aω ∈ D ′(ω) (which are zero) are the
restrictions of a unique distribution on V . Since 0 is a distribution on V so that 0 = Aω
on ω for each ω ∈ U , then A = 0 on V by uniqueness. �

A few examples of support:
• If Af ∈ D ′(Ω) is the distribution associated to f ∈ C(Ω), then spt(Af ) = spt(f).
• spt(δp) = {p}.

Exercise 13.35. Show the following statement: if A ∈ D ′(Ω) and f ∈ C∞(Ω) are such
that sptA ⊂ {f = 1}, then fA = A. ♦

Exercise 13.36. Show the following statement: if A ∈ D ′(Ω) and f ∈ C∞(Ω), then
spt(fA) ⊂ spt(f) ∩ spt(A). Is equality true?

Hint for question: Try with A = δ0. ♦

§13.18. Derivatives of the Dirac delta. I don’t think we will ever use the following
statement, but it is important to know it.

Proposition 13.37. Suppose A ∈ D ′(Ω), p ∈ Ω and spt(A) = {p}. Then there is N ∈ N
and constants cα ∈ C such that

(108) A =
∑
|α|≤N

cαDαδp,
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where δpφ = φ(p) is the Dirac delta, see §13.6.
Conversely, if A is as in (108), then spt(A) = {p}, unless cα = 0 for all α.

Proof. See [11, Thm.6.21]. �

§13.19. Distributions as derivatives of functions. I don’t think we will ever use the
following statement, but it is important to know it.

Theorem 13.38. For ever A ∈ D ′(Ω) there are continuous functions gα : Ω → C for
α ∈ Nn such that the infinite sum

∑
α gα is locally finite and

A =
∑
α∈Nn

Dαgα.

Proof. See [11, Thm.6.28]. �

Exercise 13.39. Use Theorem 13.38 to show the following: if A ∈ D ′(R), then there
exists g ∈ C(R) and N ∈ N such that A = g(N) (N -th distributional derivative of g). ♦

Remark 13.40. Here is an example of the situation described by Theorem 13.38. On
R, consider the Dirac delta at zero δ0. The theorem claims that there is a continuous
function g : R → C and N such that g(N) = δ0, see also Exercise 13.39. In fact, if
g(x) =

∫ x
−∞ 1[0,+∞)(y) dy, then (Exercise!) g(2) = δ0.

§13.20. Convolution of functions. If f, g : Rn → C are measurable functions, we
define

(109) f ∗ g(x) =

∫
Rn
f(y)g(x− y) dy,

whenever the integral is well defined, i.e., whenever y 7→ f(y)g(x−y) is integrable. Notice
that, as soon as y 7→ f(y)g(x− y) is integrable, then not only f ∗ g(x) is well defined, but
also

f ∗ g(x) =

∫
Rn
f(y)g(x− y) dy =

∫
Rn
f(x− y)g(y) dy = g ∗ f(x).

Exercise 13.41. Show that, if f ∈ L1(Rn) and g ∈ L∞(Rn), then f ∗ g(x) is well defined
for all x ∈ Rn and in fact f ∗ g ∈ C0

b (Rn). ♦

Exercise 13.42 (Young’s inequality). Show that, if f ∈ L1(Rn) and g ∈ Lp(Rn) with
p ∈ [1,∞], then f ∗ g ∈ Lp(Rn) and

(110) ‖f ∗ g‖Lp ≤ ‖f‖L1‖g‖Lp

Hint. By Hölder inequality, with 1
p

+ 1
p′ = 1,

∫
|f(y)g(y − x)| dy =

∫
|f(y)|1/p′ ·

|f(y)|1/p|g(y − x)| dy ≤ (
∫
|f(y)| dy)1/p′ · (

∫
|f(y)||g(y − x)|p dy)1/p. Therefore,

∫
(f ∗

g(x))p dx ≤ (
∫
|f(y)| dy)p/p

′ ·
∫ ∫
|f(y)||g(y − x)|p dy dx ≤ (

∫
|f(y)| dy)p/p

′ ·
∫
|g(y)|p dy ·∫

|f(y)|dy. ♦

Exercise 13.43. Show that, if f, g ∈ C0(Rn), then

spt(f ∗ g) ⊂ spt(f) + spt(g).

Can you find a case where equality holds? And where equality does not hold? ♦

§13.21. Translations and inversion of a distribution. We will extend the definition
of convolution to distributions. To do so, we need two linear operators on distributions:
here they are.

For x ∈ Rn, define τx : Rn → Rn by τx(y) = y − x. For x ∈ Rn, define the continuous
linear operator τx : D → D by

τxφ = φ ◦ τx,
for all φ ∈ D . In other words, τxφ = τ∗xφ is the pull-back via τx. By Proposition 13.14,
we have a continuous linear operator τx : D ′ → D ′

τxA[φ] = A[φ ◦ τx].
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In other words, τx = (τ∗x )∗ is the push forward induced by the pull back induced by τx.

Rn τx

y 7→y−x
// Rn

D D
τ∗x

φ 7→φ◦τx
oo

D ′
(τ∗x )∗

A 7→(φ 7→A[φ◦τx])
// D ′

I think at this point the amount of confusion surpass the amount of information.
Next, define the continuous linear operator D → D , φ 7→ φ̌, by

φ̌ : x 7→ φ(−x).

The notation φ̌ will clash with the inverse of the Fourier transform: I do not know how to
avoid this clash at the moment. For now, we follow Rudin’s notation.

Exercise 13.44. Show the relations

τyτz = τy+z;

(τxφ)∨ = τ−xφ̌;(111)

τx(Dαφ)∨ = (−1)|α|Dα(τxφ̌).(112)

♦

§13.22. Convolution of a distribution. Let φ ∈ C∞c (Rn) = D and u ∈ D ′. Define
φ ∗ u : Rn → C by

(113) (u ∗ φ)(x) = u[τxφ̌].

Note that τxφ̌(y) = φ̌(y − x) = φ(x− y). Notice that, if u is a function, then

(u ∗ φ)(x)
(113)
= u[τxφ̌] =

∫
u(y)(τxφ̌)(y) dy =

∫
u(y)φ(−(y − x)) dy

(109)
= u ∗ φ(x).

Exercise 13.45. Show that, if u ∈ D ′ and φ ∈ D , then

(114) u[φ] = (u ∗ φ̌)(0).

♦

Exercise 13.46. Show that, if u ∈ D ′ and φ ∈ D , then

(115) spt(u ∗ φ) ⊂ spt(u) + spt(φ) = {x+ y : x ∈ spt(u), y ∈ spt(φ)}.

Solution. Notice that, if x ∈ Rn and φ : Rn → C, then τxφ̌(y) = φ(x− y) 6= 0 if and only
if x− y ∈ spt(φ), if and only if y ∈ x− spt(φ). Therefore, spt(τxφ̌) = x− spt(φ).

Let x ∈ Rn \ (spt(u) + spt(φ)). Notice that, if y ∈ spt(τxφ̌) ∩ spt(u), then there is z ∈
spt(φ) with y = x−z ∈ spt(u), thus x = y+z ∈ spt(u)+spt(φ). Since x /∈ spt(u)+spt(φ),
then spt(τxφ̌) ∩ spt(u) = ∅. We conclude that u ∗ φ(x) = u[τxφ̌] = 0. ♦

Exercise 13.47. Show that, if u ∈ D ′, φ ∈ D and v ∈ Rn, then

(116) u ∗ (τvφ) = τv(u ∗ φ).

♦

Exercise 13.48. Show that φ 7→ u ∗ φ is linear. ♦

Exercise 13.49. Show that δ0 ∗ φ = φ for every φ ∈ D . What is δv ∗ φ? ♦

Proposition 13.50. If u ∈ D ′ and φ ∈ D, then u ∗ φ ∈ C∞(Rn) and, for every α ∈ Nn,

(117) Dα(u ∗ φ) = u ∗ (Dαφ) = (Dαu) ∗ φ.
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Proof. If v ∈ Rn and v ∈ Rn, then

Dv(u ∗ φ)(x) = lim
h→0

u ∗ φ(x+ hv)− u ∗ φ(x)

h

= lim
h→0

u[τx+hvφ̌]− u[τxφ̌]

h

= lim
h→0

uy

[
φ(x+ hv − y)− φ(x− y)

h

]
.

Since φ(x+ hv − y)− φ(x− y)→ Dvφ(x− y) in Dy as h→ 0, then

lim
h→0

uy

[
φ(x+ hv − y)− φ(x− y)

h

]
= uy[Dvφ(x− y)] = u ∗Dvφ(x).

This shows that, for every x ∈ Rn,

Dj(u ∗ φ)(x) = (u ∗Djφ)(x).

Iterating, we get the first part of (117).
Next,

u ∗ (Dαφ)(x) = u[τx(Dαφ)∨]

(112)
= (−1)|α|u[Dα(τxφ̌)]

= Dαu[τxφ̌]

= ((Dαu) ∗ φ)(x).

We thus have completed the proof of (117). �

Proposition 13.51. If u ∈ D ′ and φ, ψ ∈ D, then

(118) u ∗ (φ ∗ ψ) = (u ∗ φ) ∗ ψ.

Proof. We use Lemma 13.52 and Proposition 13.50:

u ∗ (φ ∗ ψ)(x) = u[τx(φ ∗ ψ)∨]

= uy[(φ ∗ ψ)∨(y − x)]

= uy[(φ ∗ ψ)(x− y)]

= uy

[∫
Rn
φ(x− y − z)ψ(z) dz

]
= uy

[
lim
h→0

∑
z∈Zn

hnφ(x− y − hz)ψ(hz)

]

[by Lemma 13.52] = lim
h→0

uy

[∑
z∈Zn

hnφ(x− y − hz)ψ(hz)

]
[since the sum is finite] = lim

h→0

∑
z∈Zn

hnuy[φ(x− y − hz)]ψ(hz)

[φ(x− y − hz) = τx−hzφ̌(y)] = lim
h→0

∑
z∈Zn

hn(u ∗ φ)(x− hz)]ψ(hz)

[by Lemma 13.52 and Proposition 13.50] =

∫
Rn

(u ∗ φ)(x− z)ψ(z) dz

= (u ∗ φ) ∗ ψ(x).

�

Lemma 13.52. Let φ ∈ D and ψ ∈ E . For h > 0, define

ρh(x) =
∑
z∈Zn

hnφ(x− hz)ψ(hz).

Then ρh ∈ E for all h > 0 and limh→0 ρh = φ ∗ ψ in E .
Moreover, if ψ ∈ D, then limh→0 ρh = φ ∗ ψ in D.



68 NICOLUSSI GOLO

Proof. Clearly ρh is smooth. The support of ρh is contained in spt(φ) + spt(ψ) (cfr. Ex-
ercise 13.43). Since the function (x, y) 7→ φ(x − y)ψ(y) is continuous, then ρh → φ ∗ ψ
uniformly on compact sets (see Exercise 13.55). The derivatives of ρh have the same form,
i.e.

Dαρh(x) =
∑
z∈Zn

hnDα
xφ(x− hz)ψ(hz).

So, Dαρh → (Dαφ) ∗ ψ = Dα(φ ∗ ψ) uniformly. We obtain ρh → φ ∗ ψ in E .
If ψ ∈ D , then (x, y) 7→ φ(x − y)ψ(y) is uniformly continuous with compact support.

Reasoning as above, we obtain ρh → φ ∗ ψ in D . �

Exercise 13.53. In this exercise, you show that Riemann sums converge to the integral.
Let f : Rn → C be a continuous and integrable function. (Integrable:

∫
Rn |f(z)|dz <

∞). For h > 0, define

Fh =
∑
z∈Zn

hnf(hz).

Show that limh→0 Fh =
∫
Rn f(z) dz. ♦

Exercise 13.54. [To do while listening to Paganini’s Caprice No. 24]. Variation over
Exercise 13.53: Let f : Rn × Rn → C be a uniformly continuous and integrable function.
Define F : Rn → C by

F (x) =

∫
Rn
f(x, z) dz.

For h > 0 and x ∈ Rn, define

Fh(x) =
∑
z∈Zn

hnf(x, hz).

Show that Fh → F uniformly in x as h→ 0. ♦

Exercise 13.55. Variation over Exercise 13.54: Let f : Rn × Rn → C be a uniformly
continuous and integrable function. Define F : Rn → C by

F (x) =

∫
Rn
f(x, z) dz.

For h > 0 and x ∈ Rn, define

Fh(x) =
∑
z∈Zn

hnf(x, hz).

Show that Fh → F uniformly on compact sets in x as h→ 0. ♦

§13.23. Smooth approximation of a distribution. Let ρ ∈ C∞c (Rn) be such that
spt(ρ) = B(0, 1), 0 ≤ ρ ≤ 1, ρ̌ = ρ, and

∫
ρ dx = 1. Define ρε(x) = ρ(x/ε)/εn. We call

the family {ρε}ε>0 an approximation of the identity on Rn, or a family of mollifiers. For
example, one can take

ρ(x) =

{
k exp

(
1

|x|2−1

)
if |x| < 1

0 otherwise,

where k normalizes the integral.

Exercise 13.56. Show that the function

ρ(x) =

{
exp

(
1

|x|2−1

)
if |x| < 1

0 otherwise,

is C∞-smooth on Rn and compute
∫ n
R ρ(x) dx. Show also that ρ is not analytic. Does it

exist a family of analytic mollifiers?
Finally, why have I put the square in the definition of ρ? Do you think we could do

without?
Hint: I have put the square to help you. The square is itself a hint. ♦
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Proposition 13.57. Let {ρε}ε>0 be an approximation of the identity on Rn, φ ∈ D and
u ∈ D ′. Then

lim
ε→0

φ ∗ ρε = φ in D ,(119)

lim
ε→0

u ∗ ρε = u in D ′.

Proof. The first identity was an exercise, but here is my solution. Notice that spt(ρε) =
B(0, ε). Since φ ∈ C1

c , then there is L such that |φ(x) − φ(y)| ≤ L|x − y| for all x, y (see
Exercise 13.58). Then, for every x ∈ Rn,

|φ ∗ ρε(x)− φ(x)| =
∣∣∣∣∫ φ(y)ρε(x− y) dy − φ(x)

∫
ρε(x− y) dy

∣∣∣∣
≤
∫
|φ(y)− φ(x)|ρε(x− y) dy

≤ Lε
∫
ρε(x− y) dy = Lε.

This shows that φ ∗ ρε → φ uniformly. Since this holds for every φ ∈ D , we also have that
Dα(φ ∗ ρε) = φ ∗Dαρε → Dαφ uniformly, for every α ∈ Nn. Therefore, φ ∗ ρε → φ in D .

For the second identity,

lim
ε→0

u ∗ ρε[φ]
(114)
= lim

ε→0
((u ∗ ρε) ∗ φ̌)(0)

(118)
= lim

ε→0
(u ∗ (ρε ∗ φ̌))(0)

[because ρ̌ = ρ] = lim
ε→0

(u ∗ (ρ̌ε ∗ φ̌))(0)

[because f̌ ∗ ǧ = (f ∗ g)∨] = lim
ε→0

(u ∗ (ρε ∗ φ)∨)(0)

(114)
= lim

ε→0
u[ρε ∗ φ]

(119)
= u[φ].

�

Exercise 13.58. Let Ω ⊂ Rn convex and φ ∈ C1(Ω) such that L = ‖∇φ‖L∞ <∞ Show
that, for every x, y ∈ Ω, |φ(x)− φ(y)| ≤ L|x− y|.

Question: what happens if we drop the hypothesis of Ω being convex? ♦

Corollary 13.59. The space C∞(Rn) is dense in D ′ (with respect to the topology of D ′).

Exercise 13.60. Show that, if Ω ⊂ Rn is open, then the space C∞(Ω) is dense in D ′(Ω)
(with respect to the topology of D ′(Ω)). ♦

Exercise 13.61. Is D(Ω) dense in D ′(Ω)? (Try at least for Ω = Rn).
Hint: Take A[φ] =

∫
φ dx and try to approximate A with functions in C∞c (Ω). ♦

§13.24. Constancy theorem.

Theorem 13.62 (Constancy theorem). If u ∈ D ′(Ω) is such that ∂ju = 0 for all
j ∈ {1, . . . , n}, then u is a constant function, that is, there is c ∈ C such that u[φ] =
c
∫

Ω
φ(x) dx for all φ ∈ D(Ω).

Proof. Let {ρε}ε>0 be an approximation of the identity on Rn. Then ∂j(u ∗ ρε) = (∂ju) ∗
ρε = 0, therefore u∗ρε = cε ∈ C. Moreover, by Proposition 13.57, u[φ] = limε→0 u∗ρε[φ] =
limε→0 cε

∫
φ(y) dy. Therefore, the is c ∈ C with c = limε→0 cε and u[φ] = c

∫
φ(y) dy,

that is, u is a constant. �
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§13.25. The space of all smooth functions as a Fréchet space. We define E (Ω)
as the vector space C∞(Ω) of smooth functions Ω → C, endowed with the family of
quasinorms pN,K : E (Ω)→ [0,+∞), for K b Ω and N ∈ N, where

pN,K(f) = sup{|Dαf(x)| : x ∈ K, |α| ≤ N} = ‖f‖CN (K).

The quasinorms determine a topology on E (Ω), where fj → f∞ in

fj → f∞ in E (Ω) ⇔ ∀K b Ω, ∀N ∈ N
limj→∞ pN,K(fj − f∞) = 0.

The topological vector space E (Ω) is a so-called Fréchet space.

Exercise 13.63. Check whether the topology on E (Ω) is the the initial topology induced
by the maps C∞(Ω) ↪→ Cm(Ω).

Hint: I actually don’t know if this is true. So, please send me an email with the result,
if you don’t mind. ♦

Notice that D(Ω) ⊂ E (Ω) as sets, but also D(Ω) ↪→ E (Ω) continuously. Indeed,
if φj → 0 in D(Ω), then φj → 0 in E (Ω), and thus the immersion is continuous by
Proposition 13.5.

However, D(Ω) is dense in E (Ω) with the topology of E (Ω).

Exercise 13.64. Show that D(Ω) is dense in E (Ω). ♦

Exercise 13.65. Find a sequence φj ∈ D(Ω) that converges to some f in E (Ω) but it
does not converge in D(Ω).

Just as a note: there is a notion of “Cauchy sequence” for topological vector spaces (see
Rudin’s book). With such a notions available, one could check that D(Ω) is complete in
its own topology, but that its completion in the topology of E (Ω) is E (Ω). This should
clarify the situation. ♦

§13.26. The dual space of E (Ω)... Let E ′(Ω) be the topological dual of E (Ω), that is,
the space of continuous linear functionals E (Ω) → C. A linear functional A : E (Ω) → C
is continuous if and only if, whenever fj → f∞ in E (Ω), then A[fj ]→ A[f∞] in C.

The topology on E ′(Ω) is the usual weak* topology, that is, point-wise convergence:

Ej → E∞ in E ′(Ω) ⇔ ∀f ∈ E (Ω) lim
j→∞

Ej [f ] = E∞[f ].

§13.27. ...is made of distributions... Since D(Ω) ⊂ E (Ω), then each E ∈ E (Ω) is also
a linear functional E : D(Ω)→ C. Since D(Ω) ↪→ E (Ω) is continuous, or, otherwise said,
since φj → φ∞ in D(Ω) implies φj → φ∞ in E (Ω), then also the restriction of E to D(Ω)
is continuous. In other words, E ∈ D(Ω).

Moreover, if Ej → E∞ in E ′(Ω), then clearly Ej → E∞ in D ′(Ω). So, we can say
E ′(Ω) ⊂ D ′(Ω).

§13.28. ...with compact support. It remains to characterize the distributions A ∈
D ′(Ω) that belong to E ′(Ω):

Proposition 13.66.

E ′(Ω) = {A ∈ D ′(Ω) with compact support}.

Proof. ⊂ From §13.27, we know that E ′(Ω) ⊂ D ′(Ω). We need to show that, if A ∈ E ′(Ω),
then spt(A) is compact. Arguing by contradiction, suppose this is not true, that is, that
there is A ∈ E ′(Ω) with spt(A) not compact. Let {Kj}j∈N be a countable increasing
sequence of compact sets Kj ⊂ Ω such that Ω =

⋃
j∈NKj . Since spt(A) is not compact,

then, for every j ∈ N there is φj ∈ D(Ω) with spt(φj) ∩Kj = ∅ and A[φj ] = 1.
Notice that φj → 0 in E (Ω): indeed, if K ⊂ Ω is compact, then there is k ∈ N such

that K ⊂ Kk and thus φj |K = 0 for all j > k; hence, for every K ⊂ Ω compact and every
N ∈ N, limj→∞ pN,K(φj) = 0.

But we have assumed that A ∈ E ′(Ω), and therefore we should have limj→∞A[φj ] = 0,
in contradiction with A[φj ] = 1 for all j. We conclude that A must have compact support.
⊃ This inclusion does not make sense when taken literally: if A ∈ D ′(Ω), then A is a

linear map D(Ω)→ C, while E (Ω) is a larger space than D(Ω). So, A is NOT a function
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E (Ω) → C, taken as it is. However, we need to consider that D(Ω) is dense in E (Ω): so,
if there is a continuous linear functional E : E (Ω) → C whose restriction to D(Ω) is A,
then E is uniquely determined by A.

This is to say that the correct interpretation of the inclusion ⊃ is: every A ∈ D ′(Ω)

with compact support extends uniquely to a continuous linear functional Ā : E (Ω)→ C.
Let A ∈ D ′(Ω) be with compact support. Fix some ψ ∈ C∞c (Ω) such that sptA ⊂

interior{ψ = 1}, which exists because spt(A) is compact. Define Aψ : E (Ω) → C by
Aψf = A[ψf ]. Notice that, firstly, Aψ ∈ E ′(Ω): indeed, if fj → f∞ in E (Ω), then
ψfj → ψf∞ in D(Ω), and thus Aψ[fj ]→ Aψ[f∞] in C.

Moreover, if φ ∈ D(Ω), then spt((1− ψ)φ) ∩ spt(A) = ∅ and thus A[φ] = A[ψφ+ (1−
ψ)φ] = A[ψφ] = Aψ[φ]. We conclude that the restriction of Aψ to E (Ω) is A. �

Exercise 13.67. In the proof of Proposition 13.66, we have defined the extension of A ∈
D ′(Ω) to E (Ω) as Aψ[f ] = A[ψf ], where ψ ∈ C∞c (Ω) such that sptA ⊂ interior{ψ = 1}.
It looks like this extension depends on the choice of ψ. Does it? ♦

Exercise 13.68. Show that all distributions in E ′(Ω) have finite order. More precisely,
if u ∈ E ′(Ω), then there are N ∈ N and C ∈ R such that, for every f ∈ E (Ω),

|u[f ]| ≤ C‖f‖CN (spt(u)).

♦

§13.29. Convolution of distributions with compact support. We have started with
the convolution u∗v of functions u and v. We have extended this operation to convolution
u ∗ v where u ∈ D ′ is a distribution and v ∈ D is a smooth function with compact
support. As it happens with the product, convolution is not defined for arbitrary pairs of
distributions. However, we can still push our definition of convolution u ∗ v to the case
when u, v ∈ D ′ and at least one of the distributions has compact support. This is done in
three steps.

Step 1: If u ∈ E ′ and f ∈ E , then we define

(120) u ∗ f(x) = u[τxf̌ ],

exactly as we did for distributions in D ′. So, if u ∈ D ′ has compact support (i.e., u ∈ E ′),
then u ∗ φ is defined not only for φ ∈ D = C∞c (Rn), but also for φ ∈ E = C∞(Rn).

Proposition 13.69. If u ∈ E ′ and f ∈ E , then u ∗ f ∈ E . Moreover

spt(u ∗ f) ⊂ spt(u) + spt(f), and

Dα(u ∗ f) = u ∗ (Dαf) = (Dαu) ∗ f, ∀α ∈ Nn.

In particular, if f ∈ D, then u ∗ f ∈ D.

Proof. The proof is the same as for Proposition 13.50. In fact, I wonder if there is a way
to merge the two proofs into one. �

Step 2: We characterize continuous linear operators D → E that commute with
translations. First of all, notice that, if u ∈ D ′, then L : φ 7→ u ∗ φ is a linear function
D → E . Moreover, by (116), L commutes with translation, i.e., L ◦ τv = τv ◦ L for all
v ∈ Rn. The next Lemma 13.70 shows that L is in fact continuous. Theorem 13.74 will
finally prove that all continuous linear operators D → E that commute with translations
are of this form.

Lemma 13.70. If φj → φ∞ in D and u ∈ D ′, then u ∗ φj → u ∗ φ∞ in E .

Proof. Let φj → φ∞ in D . We need to show that, if φj → φ∞ in D , then u ∗φj → u ∗φ∞
in E , that is, Dα(u ∗ φj)→ Dα(u ∗ φ∞) uniformly on compact sets, for every α ∈ Nn. In
fact, since Dα(u ∗ φj) = u ∗ (Dαφj) by (117), we only need to show that, if φj → φ∞ in
D , then u ∗ φj → u ∗ φ∞ uniformly on compact sets.

Let φj → φ∞ in D . Fix a compact set K ⊂ Rn. Let K̃ ⊂ Rn be a compact such
that spt(φj) ⊂ K̃ for all j. Notice that, if x ∈ K, then x − y ∈ K̃ if and only if
y ∈ K − K̃ = {a − b : a ∈ K, b ∈ K̃}. So, for every x ∈ K and φ ∈ D with spt(φ) ⊂ K̃,
then τxφ̌ is supported in K − K̃, which is compact.
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By Proposition 13.9, there are C ∈ R and N ∈ N such that |u[φ]| ≤ C‖φ‖CN for all
φ ∈ D with spt(φ) ⊂ K − K̃. Then, for every x ∈ K,

|u ∗ φj(x)− u ∗ φ∞(x)| = |u[τx(φ̌j)]− u[τx(φ̌∞)]|
≤ C‖τx(φ̌j)− τx(φ̌∞)‖CN = C‖φj − φ∞‖Cn .

Therefore, u ∗ φj → u ∗ φ∞ uniformly on K. �

Lemma 13.71. If φj → φ∞ in E and u ∈ E ′, then u ∗ φj → u ∗ φ∞ in E .

Proof. The proof is very similar to the proof of Lemma 13.70, so we will leave it as an
exercise, see Exercise 13.72. �

Exercise 13.72. Show that, if φj → φ∞ in E and u ∈ E ′, then u ∗ φj → u ∗ φ∞ in E . ♦

Lemma 13.73. If φj → φ∞ in D and u ∈ E ′, then u ∗ φj → u ∗ φ∞ in D.

Proof. If φj → φ∞ in D , then there is a compact K ⊂ Rn such that spt(φj) ⊂ K for all j
and Dαφj → Dαφ∞ uniformly on K for all α ∈ Nn. Then spt(u ∗ φj) ⊂ spt(u) +K = K̃
by Proposition 13.69, for all j. By Lemma 13.71, u ∗ φj → u ∗ φ∞ in E . In particular,
Dα(u∗φj)→ Dα(u∗φ∞) uniformly on K̃ for all α ∈ Nn. This shows that u∗φj → u∗φ∞
in D . �

Theorem 13.74 ([9, Thm.4.2.1]). Let L be a linear map from D = C∞c (Rn) to C0(Rn).
The following statements are equivalent:

(1) L is (sequentially) continuous, i.e., if φj → φ∞ in D then Lφj → Lφ∞ in C0(Rn),
and commutes with translations, i.e., L[τxφ] = τxLφ for all x ∈ Rn;

(2) there is u ∈ D ′ such that Lφ = u ∗ φ for all φ ∈ D.
Moreover, if the above conditions are met, then the distribution u is unique, and L is in
fact a continuous linear operator D → E .

Proof. (1)⇒ (2): Define u : D → R by u[φ] = L[φ̌](0). Since u is the composition of the
continuous linear functions φ 7→ φ̌, ψ 7→ L[ψ], f 7→ f(0), then u is linear and continuous,
that is, u ∈ D ′. Moreover,

u ∗ φ(x) = u[τxφ̌]

(111)
= u[(τ−xφ)∨]

= L[((τ−xφ)∨)∨](0)

= L[τ−xφ](0)

= τ−xL[φ](0)

= L[φ](x).

For the uniqueness, notice that, if u1, u2 ∈ D ′ are such that Lφ = u1 ∗ φ = u2 ∗ φ for all
φ ∈ D , then, for all φ ∈ D , u1[φ] = u1 ∗ φ(0) = u2 ∗ φ(0) = u2[φ], that is, u1 = u2.

(2) ⇒ (1): By Proposition 13.50, we know that φ 7→ u ∗ φ is a linear map D → E .
Next, by Lemma 13.70, we know that this map is continuous. Finally, the fact that this
map commutes with translations has been proven in (116) (which was an exercise). �

Step 3: If u1, u2 ∈ D ′ are distributions, one of which has compact support, then, for
every φ ∈ D ,

(121) L[φ] = u1 ∗ (u2 ∗ φ)

is a well defined element of E and the map φ 7→ Lφ is continuous. Indeed, we have two
cases:

(1) If u1 ∈ E ′, then u2 ∈ D ′; so, u2 ∗ φ is defined by (113), u2 ∗ φ ∈ E by Proposi-
tion 13.50, and thus (121) is defined by (120). Moreover, if φj → φ∞ in D(Ω),
then u2∗φj → u2∗φ∞ in E by Lemma 13.70, and thus u1∗(u2∗φj)→ u1∗(u2∗φ∞)
in E by Lemma 13.71.
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(2) If u2 ∈ E ′, then u1 ∈ D ′; so, u2 ∗ φ is defined by (120) and u2 ∗ φ ∈ D by
Proposition 13.69, and thus (121) is defined by (113). Moreover, if φj → φ∞ in
D(Ω), then u2 ∗ φj → u2 ∗ φ∞ in D by Lemma 13.73, and thus u1 ∗ (u2 ∗ φj) →
u1 ∗ (u2 ∗ φ∞) in E by Lemma 13.70.

We conclude that, by Theorem 13.74, there is a unique u ∈ D ′ such that Lφ = u ∗ φ for
all φ ∈ D . So, we have the definition: If u1, u2 ∈ D ′ one of which has compact support,
then

u = u1 ∗ u2 ∈ D ′ ⇔ ∀φ ∈ D , u ∗ φ = u1 ∗ (u2 ∗ φ).

§13.30. Properties of convolutions. We summarize the properties of convolutions.

Proposition 13.75. (1) If u1, u2 ∈ D ′, one of which has compact support, then
u1 ∗ u2 ∈ D ′ is well defined.

(2) If u1, u2 ∈ D ′, one of which has compact support, then u1 ∗ u2 = u2 ∗ u1.
(3) If u1, u2 ∈ D ′, one of which has compact support, then spt(u1 ∗ u2) ⊂ spt(u1) +

spt(u2).
(4) If If u1, u2, u3 ∈ D ′, two of which have compact support, then (u1 ∗ u2) ∗ u3 =

u1 ∗ (u2 ∗ u3).
(5) If u1, u2 ∈ D ′, one of which has compact support, and α ∈ Nn, then Dα(u ∗ v) =

(Dαu) ∗ v = u ∗ (Dαv).
(6) If u1, u2 ∈ D ′, one of which has compact support, and one of which is smooth,

then u1 ∗ u2 ∈ E .

Proof. The proof is left as an exercise. I only write the proof of spt(u1 ∗ u2) ⊂ spt(u1) +
spt(u2).

Since convolution is commutative, we can assume u2 ∈ E ′. Take φ ∈ D such that
spt(φ)∩(spt(u1)+spt(u2)) = ∅. Then (u1∗u2)[φ]

(114)
= (u1∗u2)∗φ̌(0) = u1∗(u2∗φ̌)(0) where

spt(u2 ∗ φ̌)
(115)
⊂ spt(u2) + spt(φ̌) = spt(u2)− spt(φ). It follows that spt(u1 ∗ (u2 ∗ φ̌))

(115)
⊂

spt(u1) + spt(u2 ∗ φ̌) ⊂ spt(u1) + spt(u2)− spt(φ). Since spt(φ)∩ (spt(u1) + spt(u2)) = ∅,
then 0 /∈ spt(u1 ∗ (u2 ∗ φ̌)), that is u1 ∗ (u2 ∗ φ̌)(0) = 0. �

Exercise 13.76. Prove Proposition 13.75. Some parts have already been proven, others
instead have been proven only partially. Put all the pieces together. ♦

Exercise 13.77. Show that δ0 ∗ u = u for every u ∈ D ′. What is δv ∗ u? ♦

§13.31. Singular support. The singular support of a distribution u ∈ D ′(Ω), denote
by singSpt(u), is the set defined by:

Ω \ singSpt(u) =
⋃
{U ⊂ Ω open, such that u|V ∈ C∞(V )}.

Lemma 13.78. Let u ∈ D ′(Ω). The restriction of u to Ω\singSpt(u) is a smooth function.

Exercise 13.79. Show that singSpt(u) ⊂ spt(u). ♦

Saying that a distribution u is smooth is equivalent to say that singSpt(u) = ∅. The
smoothness statements for convolutions in Proposition 13.50 and Proposition 13.69, gen-
eralize in the following statement:

Proposition 13.80. If u, v ∈ D ′, one of which has compact support, then

(122) singSpt(u ∗ v) ⊂ singSpt(u) + singSpt(v).

Proof. Let A,B ⊂ Rn open such that singSpt(u) ⊂ A and singSpt(v) ⊂ B. Then there
are smooth functions a, b ∈ C∞(Rn) such that

singSpt(u) ⊂ int{a = 1} ⊂ spt(a) ⊂ A,
singSpt(v) ⊂ int{b = 1} ⊂ spt(b) ⊂ B.

Then

u ∗ v = ((au) ∗ (bv)) + ((1− au) ∗ (bv)) + ((au) ∗ (1− bv)) + ((1− au) ∗ (1− bv)).
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Notice that all these convolutions are well defined. Moreover, in all but the first one, one
of the factors of the convolutions is a smooth function. Hence,

singSpt(u ∗ v) ⊂ singSpt((au) ∗ (bv)) ⊂ spt((au) ∗ (bv)) ⊂ spt(au) + spt(bv) ⊂ A+B.

Since A and B are arbitrary, we obtain (122). �

Exercise 13.81. Show that, if E ∈ D ′ is such that singSpt(E) ⊂ {0}, then singSpt(E ∗
u) ⊂ singSpt(u) for all u that can be convoluted with E. ♦

§13.32. Linear differential operators with constant coefficients. A linear differ-
ential operator with constant coefficients of order m ∈ N is a differential operator of the
form

P =
∑
|α|≤m

cαDα,

with some {cα}α ⊂ C. Our four PDE are of this type:

∂t − b · ∇, −4, ∂t −4, ∂2
t −4.

Such a differential operator defines a linear operator P : D ′ → D ′. Suddenly, we can
try to solve in u ∈ D ′ the equation

Pu = f

for some f ∈ D ′.

§13.33. Fundamental solution. A fundamental solution of a linear differential operator
with constant coefficients P is a distribution E ∈ D ′ such that

PE = δ0,

where δ0 is the Dirac delta centered at 0.

Exercise 13.82. Show that the function Φ : Rn \ {0} → R,

Φ(x) =

{
− 1

2π
log(|x|) if n = 2,

1
n(n−2)ωn

1
|x|n−2 if n ≥ 3,

where ωn is the volume of the unit ball in Rn, is a fundamental solution of P = −4. ♦

Exercise 13.83. Show that the function Φ : Rn × R \ {(0, 0)} → [0,+∞) defined by

Φ(x, t) =

{
1

(4πt)n/2 exp
(
− |x|2

4t

)
for x ∈ Rn and t > 0,

0 otherwise, i.e., (x, t) ∈ (Rn × (−∞, 0]) \ {(0, 0)},
is a fundamental solution of P = ∂t −4. ♦

Exercise 13.84. Find a fundamental solution for the wave operator P = � = ∂2
t −4 in

dimension 1, 2 and 3. ♦

§13.34. Use of fundamental solutions. A fundamental solution is useful for the fol-
lowing very simple reason. If P is a differential operator and E ∈ D ′ is such that PE = δ0,
then, for every f ∈ E ′,

f = f ∗ δ0 = f ∗ PE = P (f ∗ E).

So, f ∗ E is a solution to Pu = f .

§13.35. Hypoellipticity. A linear operator P is hypoelliptic if, for every Ω ⊂ Rn open
and u ∈ D ′(Ω), Pu ∈ C∞(Ω) implies u ∈ C∞(Ω).

Theorem 13.85. Let P be a linear differential operator with constant coefficients. Then
the following are equivalent:

(i) Some fundamental solution E of P has singSpt(E) ⊂ {0}.
(ii) Every fundamental solution E of P has singSpt(E) ⊂ {0}.
(iii) P is hypoelliptic.
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Proof. The implications (iii) ⇒ (ii) ⇒ (i) are clear. We need to show (i) ⇒ (iii). Let
Ω ⊂ Rn open and u ∈ D ′(Ω) with Pu ∈ C∞(Ω). Fix x ∈ Ω and let ψ ∈ C∞c (Ω) such
that x ∈ int{ψ = 1}. Then ψu ∈ E ′. Moreover, by the Generalized Leibniz Rule (107),
P (ψu) = ψPu+R where spt(R) ⊂ spt(Dψ). So

ψu = δ0 ∗ (ψu) = (PE) ∗ (ψu) = E ∗ (P (ψu)) = E ∗ (ψPu) + E ∗R.
and

singSpt(ψu) ⊂ singSpt(E ∗ (ψPu)) ∪ singSpt(E ∗R)

⊂ ∅ ∪ (singSpt(E) + singSpt(R))

⊂ spt(R) ⊂ spt(Dψ).

Since x /∈ spt(Dψ), we obtain that x /∈ singSpt(ψu). In other words, ψu is smooth in a
neighborhood of x. Since ψ is 1 in a neighborhood of x, we get that u is smooth in a
neighborhood of x. We conclude that u is smooth in x. �

§13.36. Extra topics that are not covered.
• kernel theorem,
• convolution operators,
• existence of fundamental solution
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14. Schwartz distributions and Fourier transform

§14.1. Schwartz test functions. The Schwartz space S of Schwartz functions is the
space of functions f : Rn → C that are smooth and such that, for every α ∈ Nn and every
N ∈ N there exists Cα,N with

(123) |Dαf(x)| ≤ Cα,N (1 + |x|)−N , ∀x ∈ Rn.

In other words, a smooth function f belongs to S if f and all its derivatives decrease at
infinity faster than any (inverse of) polynomial. An example is f(x) = exp(−|x|2).

The condition (123) can be expressed in different ways. For instance, one can require
the upper bound |Dαf(x)| ≤ Cα,N (1 + |x|2)−N/2, or |Dαf(x)| ≤ Cα,N (1 + |x|2)−N .

Another way to express the condition (123) is as follows: a function f ∈ C∞(Rn)
belongs to S if and only if, for every α, β ∈ Nn, the seminorms

pα,β(f) = sup
x∈Rn

|xαDβf(x)|

are finite. An equivalent family of seminorms is

pα,N (f) = sup
x∈Rn

(1 + |x|)N |Dαf(x)|.

We endow S with the family of seminorms {pα,β}α,β∈Nn , so that S becomes a Fréchet
space. This means in particular that convergence in S is defined as follows:

fj → f∞ in S ⇔ ∀α, β ∈ Nn lim
j→∞

pα,β(fj − f∞) = 0.

Notice that, set-wise,

D ⊂ S ⊂ E .

As usual, one can check that these embeddings are continuous.

Exercise 14.1. Show that S ⊂ L1.
Hint: Use (123) for N large enough. ♦

Exercise 14.2. Show that fj → f∞ in S if and only if xαDβfj → xαDβf∞ in L∞, for
every α, β ∈ Nn. ♦

Exercise 14.3. Show that, if fj → f∞ in S , then, for every α ∈ Nn, Dαfj → Dαf∞ in
L1(Rn).

Hint: Take first α = 0. Up to substituting fj with fj − f∞, we can also assume
f∞ = 0. So we need to show that, if fj → 0 in S , then fj → 0 in L1(Rn). The
convergence fj → 0 in S implies that, for every N > 0 and every ε > 0, there is J ∈ N
such that |fj(x)|(1 + |x|)N < ε for all x ∈ Rn and all j > J . ♦

Exercise 14.4. Define gε : Rn → [0,+∞) by

gε(z) =
1

εn
e−π|z|

2/ε2 =
1

εn
exp(−π|z|2/ε2).

Show that, if f ∈ S , then f ∗ gε → f in S as ε→ 0.
Hint: Go back to the proof of the first statement in Proposition 13.57. The now gε

does not have compact support, but
∫
Rn\B(0,1)

gε(x) dx is arbitrarily small as ε→ 0. ♦

§14.2. Fourier transform. For u ∈ L1(Rn) and ξ ∈ Rn, define the Fourier transform

(124) û(ξ) = F (u)(ξ) =

∫
Rn
e−2πix·ξu(x) dx.

Since |e−2πix·ξu(x)| ≤ |u(x)|, we readily have that û(x) is well defined for every x ∈ Rn
and that

(125) ‖û‖L∞ ≤ ‖u‖L1 .

In particular, we have that, if uj → u∞ in L1, then ûj → û∞ uniformly on Rn.
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§14.3. Literature on the Fourier transform. There are a lot of resources on the
Fourier transforms. We follow in particular these three:

(1) the short account in Section 0.D, page 14, in G. B. Folland. Introduction to partial
differential equations. Second. Princeton University Press, Princeton, NJ, 1995,
pp. xii+324;

(2) Chapter VII in L. Hörmander. The analysis of linear partial differential opera-
tors. I. vol. 256. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Distribution theory and Fourier analysis.
Springer-Verlag, Berlin, 1983, pp. ix+391;

(3) Chapter 7 in W. Rudin. Functional analysis. Second. International Series in Pure
and Applied Mathematics. McGraw-Hill, Inc., New York, 1991, pp. xviii+424.

Be aware that the Fourier transform has slightly different definitions in the literature.
Beside our formula (124), there are also∫

Rn
e−ix·ξu(x) dx,

1

(2π)n/2

∫
Rn
e−2πix·ξu(x) dx.

These differences will lead to differences in the formulas, usually in the multiplicative
constants. It is good to do the proofs with one formula, but also to try the others.

§14.4. First properties of the Fourier transform.

Exercise 14.5. Prove the following properties:
(1) If u ∈ L1(Rn), a ∈ Rn, and ua(x) = u(x+ a) then F (ua)(ξ) = e2πia·ξF (u)(ξ).
(2) If u ∈ L1(Rn), T : Rn → Rn is linear and invertible, then

(126) F (u ◦ T )(ξ) = |detT |−1F (u)((T−1)∗ξ).

(3) If T is a rotation of Rn, then F (u ◦ T ) = F (u) ◦ T .
Hint: See [7, Proposition (0.21)] ♦

Exercise 14.6. Compute F (ū) in terms of F (u). (Here ·̄ denotes the complex conjugate,
that is, for x, y ∈ R, x+ iy = x− iy.) ♦

Exercise 14.7. Compute F (u(−x)) in terms of F (u). ♦

Exercise 14.8. Fix f ∈ S and define g(x) = f(−x). Show that ĝ(ξ) = f̂(ξ). ♦

Exercise 14.9. Compute the Fourier transform of the function

u(x) = Ae−a|x|
2

,

for every A ∈ C and a > 0.
Solution: Let’s start with n = 1, A = 1 and a = π, that is, u(x) = e−πx

2

. Then, for
ξ ∈ R,

û(ξ) =

∫
R
e−2πiξxe−πx

2

dx =

∫
R
e−2πiξx−πx2

dx.

Since (x+ iξ)2 = x2− ξ2 + 2ixξ, then −2πiξx−πx2 = −π(x2 + 2ixξ) = −π((x+ iξ)2 + ξ2)
and thus

û(ξ) =

∫
R
e−π((x+iξ)2+ξ2) dx = e−πξ

2
∫
R
e−π(x+iξ)2 dx.

Now we see that we are integrating the holomorphic function f(z) = e−πz
2

along the
curve γ(t) = t + iξ. Applying Cauchy’s theorem, we can integrate along the other curve
η(t) = t, and thus

û(ξ) = e−πξ
2
∫
R
e−πx

2

dx = e−πξ
2

,

because
∫
R e
−πx2

dx = 1. So, û = u, or F (u) = u.
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We extend this result to Rn for n ≥ 1:

F (e−π|x|
2

)(ξ) =

∫
Rn
e−2πiξ·xe−π|x|

2

dx

=

∫
Rn
e−2πi

∑
j ξjxj−π

∑
j x

2
j dx

=

n∏
j=1

∫
R
e−2πiξjxj−πx2

j dxj

=

n∏
j=1

e−πξ
2
j = e−π|ξ|

2

.

Again, we have,

F (e−π|x|
2

) = e−π|ξ|
2

,

that is, the function u(x) = e−π|x|
2

is a fixed point of F : S (Rn)→ S (Rn).
We now go back to the general u : Rn → R, u(x) = Ae−a|x|

2

. By linearity of F , we
have F (Ae−a|x|

2

) = AF (e−a|x|
2

). We apply (126) with Tx =
√
a/πx, so that

F (e−a|x|
2

)(ξ) = F (e−π|x|
2 ◦ T )(ξ)

= (a/π)−n/2F (e−π|x|
2

)(ξ/
√
a/π)

=
(π
a

)n/2
e−

π2

a
|x|2 .

We now wrap up the solution to get

(127) F (Ae−a|x|
2

) = A
(π
a

)n/2
e−

π2

a
|x|2 .

♦

Recall from Exercise 13.42, that the convolution of two functions f, g ∈ L1(Rn) is a
well defined function f ∗ g ∈ L1(Rn).

Exercise 14.10. Show that, for every f, g ∈ L1(Rn),

(128) F (f ∗ g) = F (f) ·F (g).

Or, otherwise stated, (f ∗ g)∧ = f̂ ĝ. ♦

Exercise 14.11. Show that, for every f, g ∈ L1(Rn),∫
Rn
f(x)ĝ(x) dx =

∫
Rn
f̂(ξ)g(ξ) dξ.

Hint: Notice that, by (125), fĝ ∈ L1(Rn) and f̂ , g ∈ L1(Rn). So, unpack the definition
of ĝ and use Fubini. ♦

§14.5. The Fourier transform preserves the Schwartz class.

Proposition 14.12. If f ∈ S , then f̂ ∈ S and, for every α ∈ Nn,

F (Dαf) = (2πiξ)αF (f),(129)

F ((−2πix)αf) = DαF (f).(130)

Proof. For f ∈ S and j ∈ {1, . . . , n}, we have ∂jf ∈ S and thus

F (∂jf)(ξ) =

∫
Rn

exp(−2πiξ · x)
∂

∂xj
f(x) dx

=

∫
Rn

∂

∂xj
[exp(−2πiξ · x)f(x)] dx−

∫
Rn

(−2πiξj) exp(−2πiξ · x)f(x)) dx

= (2πiξj)f̂(ξ).

Iterating, we obtain (129).
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Since F (Dαf) ∈ L∞(Rn) for every α ∈ Nn, we conclude that f̂ , which a priori only
belongs to L∞(Rn), in fact satisfies

(131) p0,N (f̂) = sup
ξ∈Rn

(1 + |ξ|)N |f̂(ξ)| <∞,

for every N ∈ N.
We don’t know yet that f̂ is differentiable. For this, we use (3.3.3) in Theorem 3.3 to

compute, for f ∈ S and j ∈ {1, . . . , n},

∂jF (f)(ξ) =
∂

∂ξj

∫
Rn
e−2πiξ·xf(x) dx

=

∫
Rn

∂

∂ξj
[e−2πiξ·xf(x)] dx

=

∫
Rn

(−2πixj)e
−2πiξ·xf(x) dx

= F ((−2πixj)f)(ξ).

Iterating, we obtain (130). We conclude that f̂ is smooth and that, for every α ∈ Nn,
since Dαf̂ is the Fourier transform of a function in S , then, by (131),

pα,N (f̂) = p0,N (Dαf̂) <∞.
We conclude that f̂ ∈ S . �

Corollary 14.13 (Riemann–Lebesgue Lemma). If f ∈ L1(Rn), then f̂ ∈ C0
0 (Rn), that

is, f̂ is continuous and tends to zero at infinity.

Proof. We know that S is dense in L1(Rn), see Exercise 14.14. Let f ∈ L1(Rn) and
fj ∈ S a sequence with fj → f in L1(Rn). By (125), f̂j → f̂ in L∞(Rn), that is f̂j → f̂

uniformly. It follows that f̂ is continuous.
We need to show that f̂ tends to zero at infinity. For every ε > 0 there is j ∈ N

with ‖fj − f‖L∞ < ε. Then, there is R > 0 such that |fj(ξ)| < ε for every ξ with
|ξ| > R. Therefore, if |ξ| > R, then |f(ξ)| ≤ |f(ξ)− fj(ξ)|+ |fj(ξ)| < 2ε. This shows that
limξ→∞ f̂(ξ) = 0. �

Exercise 14.14. Show that S is dense in L1(Rn).
Hint: Given f ∈ L1(Rn), consider fj(x) = ψ(x/j)f ∗ ρ1/j(x), where {ρε}ε>0 is a family

of mollifiers, and ψ ∈ C∞c (Rn) is a function valued in [0, 1] with B(0, 1) ⊂ {ψ = 1}. You
then need to show that fj ∈ S and that fj → f in L1(Rn). Use the fact that, for every
ε > 0 there exists R > 0 such that

∫
Rn\B(0,R)

|f(x)| dx < ε (this is a direct consequence of
integrability). ♦

§14.6. Fourier inversion theorem.

Theorem 14.15. The Fourier transform F : S → S is a linear automorphism of S .
In particular, if f ∈ S , then

(132) F−1(f)(x) =

∫
Rn
e2πix·ξf(ξ) dξ.

Proof. We know that F is linear. We need to show that it is onto and into, and that both
F and F−1 are continuous.

First we show that F is continuous. If α, β ∈ Nn, then

ξαDβ f̂(ξ)
(130)
= ξαF ((−2πix)βf)

(129)
=

1

(2πi)α
F (Dα(−2πix)βf)

=
(−2πi)β

(2πi)α
F (Dα(xβf)).

If fj → 0 in S , then Dα(xβfj)→ 0 in S , for every α, β ∈ Nn. It follows that Dα(xβfj)→
0 in L1(Rn), and thus ξαDβ f̂j → 0 in L∞(Rn), for every α, β ∈ Nn. This means that
f̂j → 0 in S (see Exercise 14.2). So, F : S → S is continuous.
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Denote by G (f)(x) the quantity on the right-hand side of (132). Notice that G (f)(x) =
F (f)(−x): so, we know that G is a continuous linear operator S → S . We will show
that G (F (f)) = f , for all f ∈ S .

For x ∈ Rn and ε > 0, define

φx,ε(ξ) = e2πix·ξ−πε2|ξ|2 = exp(2πix · ξ − πε2|ξ|2).

If we set gε(z) = e−π|z|
2/ε2 = exp(−π|z|2/ε2), then one can compute

φ̂x,ε(y) = gε(x− y).

Then we have

G (e−πε
2|ξ|2 f̂)(x) =

∫
Rn
e−πε

2|ξ|2e2πix·ξf̂(ξ) dξ

=

∫
Rn
φx,ε(ξ)f̂(ξ) dξ

=

∫
Rn
φ̂x,ε(y)f(y) dy

=

∫
Rn
gε(x− y)f(y) dy

= gε ∗ f(x).

On the one hand, gε ∗ f → f in S as ε → 0 by Exercise 14.4, hence point-wise. On the
other hand, e−πε

2|ξ|2 f̂ → f̂ in L1(Rn) as ε→ 0. Therefore, using also the continuity of G ,
we conclude that G (f̂) = f .

We complete the proof with a bit of algebra. Define I : S → S , I (f)(x) = f(−x).
We have just proven

F ◦ I ◦F = IdS .

This shows that F is also surjective, with inverse G = I ◦F . �

Remark 14.16. Notice that, if you write down the formula for G (F (f)), you cannot
conclude using Fubini! In fact, we have somehow proved that∫

Rn

∫
Rn
e2πi(x−y)·ξf(y) dy dξ = f(x).

This identity does not have a meaning as integrals, because the integrand function is not
in L1(Rn × Rn). However, it does look a lot the convolution of f with δ0, in which case
we would have proven

(133)
∫
Rn
e2πiz·ξ dξ = δ0(z).

In the latter identity, the integral is not an integral: we will make sense of (133) distribu-
tionally.

Remark 14.17. The inverse of the Fourier transform applied to f is also denoted as
f̌ = F−1(f). This is a problem in my notes, because I have already used this notation for
the function f̌(x) = f(−x). This clash of notation does not have a solution yet. I am just
renouncing to use the second meaning in this section, so that, in the context of Fourier
transform, f̌ is only the inverse transform of f .

Exercise 14.18. Define I : S → S , I(f)(x) = f(−x). Show that

F 2 = I and F 4 = IdS .

Hint: Forget about the Fourier transform, but only use FIF = 1. ♦
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§14.7. Plancherel Theorem. The space L2(Rn) is the space of complex valued mea-
surable functions f : Rn → C such that

∫
Rn |f(x)|2 dx < ∞. The vector space L2(Rn) is

a Hilbert space when endowed with the sesquilinear form

〈f, g〉 =

∫
Rn
f(x) ¯g(x) dx, ∀f, g ∈ L2(Rn).

Theorem 14.19. The Fourier transform extends uniquely to a unitary automorphism of
L2(Rn). More precisely, the Fourier transform has a continuous extension F : L2(Rn)→
L2(Rn) with

‖F (f)‖L2 = ‖f‖L2 ∀f ∈ L2(Rn),

〈F (f),F (g)〉 = 〈f, g〉 ∀f, g ∈ L2(Rn).

Proof. By Exercise 14.20 and Theorem 14.15, we know that F : S → S is continuous
with respect to the topology of L2(Rn). Since S is dense in L2(Rn), then F admits a
unique continuous extension L2(Rn)→ L2(Rn). The inverse of F has the same properties,
and thus the extension of F is a continuous invertible linear operator.

We only need to show ‖F (f)‖L2 = ‖f‖L2 for every f ∈ S . Fix f ∈ S and define
g(x) = f(−x). Notice that ĝ(ξ) = f̂(ξ); see also Exercise 14.8. Then:

‖F (f)‖L2 =

∫
Rn
f̂(ξ)f̂(ξ) dξ

[by Exercise 14.8] =

∫
Rn
f̂(ξ)ĝ(ξ) dξ

(128)
=

∫
Rn

(f ∗ g)∧(ξ) dξ

=

∫
Rn
e2πi0·ξ(f ∗ g)∧(ξ) dξ

(132)
= f ∗ g(0)

=

∫
Rn
f(x)f(−x) dx

= ‖f‖L2 .

�

Exercise 14.20. (Maybe this already appeared before). Show that D is dense in Lp(Rn)
for all p ∈ [1,∞). Deduce that S is dense in Lp(Rn) for all p ∈ [1,∞).

But then, show also that, if fj → f∞ in D or S , then fj → f∞ in Lp(Rn) for all
p ∈ [1,∞). ♦

§14.8. Schwartz distributions. The topological dual S ′ is the space of Schwartz dis-
tributions, or tempered distributions. The convergence of sequences in S ′ is pointwise,
that is, An → A∞ in S ′ if and only if An[φ]→ A∞[φ] for every φ ∈ S .

Exercise 14.21. Show that

D ′ ⊃ S ′ ⊃ E ′.

♦

Exercise 14.22. Show the following properties of tempered distributions:
(1) If u ∈ S ′ and α ∈ Nn, then Dαu ∈ S ′.
(2) If u ∈ S ′ and f ∈ C∞(Rn) is such that, for all α ∈ Nn, Dαf grows at most

polynomially at infinity, then fu ∈ S ′.
(3) If u ∈ S ′ and f ∈ S , then u ∗ f ∈ S .

♦

Exercise 14.23. Show that, if h : Rn → C is a measurable function that grows at most
polynomially, then f 7→

∫
Rn h(x)f(x) dx defines a tempered distribution. ♦
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§14.9. The Fourier transform of tempered distributions. We define the Fourier
transform of a tempered distribution u ∈ S ′ as û = F (u), where

û[f ] = u[f̂ ], ∀f ∈ S .

Exercise 14.24. Show the following properties of the Fourier transform of tempered
distributions:

(1) If u ∈ S ′, then û ∈ S ′.
(2) If u ∈ S ′ is actually in S , i.e., u[f ] =

∫
Rn u(x)f(x) dx for all f ∈ S , then û as

distribution is equal to û as function.
(3) F : S ′ → S ′ is a continuous, invertible linear operator, with inverse F−1u[f ] =

u[F−1(f)].
(4) If u ∈ S ′ and f ∈ S , then

(134) F (u ∗ f) = ûf̂ .

(5) If f ∈ S ′, then f̂ ∈ S ′ and, for every α ∈ Nn,
F (Dαf) = (2πiξ)αF (f),(135)

F ((−2πix)αf) = DαF (f).

♦

Exercise 14.25. Compute F (δ0). ♦

Exercise 14.26. For a ∈ Rn, compute F (δa) and F (eia·x). Then compute F−1(δa) and
F−1(eia·x).

Solution. Using only definitions, we have, for all a ∈ Rn and φ ∈ S , F (δa)[φ] =
δa[Fφ] = Fφ(a) =

∫
Rn exp(−2πia · x)φ(x) dx. This identity exactly means that, as

distributions over Rn, F (δa) = exp(−2πia · x).
There is not much else to compute. Notice that Iδa[φ] = δa[Iφ] = φ(−a) = δ−a[φ].

So,

F (δa) = exp(−2πia · x),

δ−a = Iδa = F 2(δa) = Fx(exp(−2πia · x)),

Fx(eia·x) = δ a
2π
,

F−1δa = exp(2πia · x),(136)

F−1(eia·x) = IF (eia·x) = Iδ a
2π

= δ− a
2π
.

♦

Exercise 14.27. Compute F (1). ♦

Exercise 14.28. Compute F (p(x)), where p(x) =
∑
|α|≤N cαx

α is a polynomial of degree
N . ♦

Remark 14.29. It is a fact that, if û has compact support, then u is analytic, see [9,
Thm 7.1.14] It is a recurrent theme that regularity of u is proportional to integrability of
û (and viceversa, of course). There are two sorts of “equilibrium points” of this behavior:
S and L2(Rn).

§14.10. Applications to PDE: Harmonic polynomials. If u ∈ S ′ is such that

−4u = 0,

then

0 = F (−4u)
(135)
= −

n∑
j=1

(2πiξj)
2û = 4π2|ξ|2û.

Therefore, spt(û) ⊂ {0}, that is, by Proposition 13.37, û =
∑
|α|≤N cαDαδ0 for some

constants cα ∈ C. It follows that u is a polynomial:

Proposition 14.30. Harmonic tempered distributions are harmonic polynomials.

Exercise 14.31. The condition |ξ|2v = 0 implies spt(v) ⊂ {0}. Can you characterize the
distributions v ∈ S ′ that satisfy |ξ|2v = 0? ♦
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§14.11. Applications to PDE: Heat equation. See also [7, §4.A, p.143] and [5, p.192].
Let’s consider the heat equation

(137)

{
∂tu−4u = 0 in Rn × (0,+∞),

u = g on Rn × {0}.
where we can see u as a function [0,+∞)→ S ′, and g ∈ S ′.

We apply the Fourier transform in the spatial variable, so that (137) becomes{
∂tû− (2πi)2|ξ|2û = 0 in Rn × (0,+∞),

û = ĝ on Rn × {0}.
A solution to the ODE ∂tû = −4π2|ξ|2û with û(0) = ĝ is

û(t) = exp(−4π2|ξ|2t)ĝ.
Notice that, for each t > 0, ξ 7→ exp(−4π2|ξ|2t) is an element of S , so the û(t) ∈ S ′. It
follows that, for t > 0,

u(t) = F−1
ξ (exp(−4π2|ξ|2t)ĝ)

(134)
= F−1

ξ (exp(−4π2|ξ|2t)) ∗F−1
ξ (ĝ)

(127)
=

(
1

(4πt)n/2
e−
|x|2
4t

)
∗ g.

We have obtained again a representation formula for the solution of the heat equation,
as we did in Theorem 11.12.

§14.12. Applications to PDE: Wave equation. See also [7, §5.D, p.177] and [5,
p.194].

Let’s consider the wave equation

(138)

{
∂2
t u−4u = 0 in Rn × (0,+∞),

u = g, ∂tu = h on Rn × {0}.
where we can see u as a function [0,+∞)→ S ′, and g, h ∈ S ′.

We apply the Fourier transform in the spatial variable, so that (138) becomes{
∂2
t û− (2πi)2|ξ|2û = 0 in Rn × (0,+∞),

û(0) = ĝ ∂tû(0) = ĥ on Rn × {0}.
A solution to the ODE ∂2

t û = −4π2|ξ|2û is

û(t) = exp(2πi|ξ|t)A+ exp(−2πi|ξ|t)B.
The initial data û(0) = ĝ and ∂tû(0) = ĥ, give

û(t) =
exp(2πi|ξ|t)

2

(
ĝ +

ĥ

2πi|ξ|

)
+

exp(−2πi|ξ|t)
2

(
ĝ − ĥ

2πi|ξ|

)

= cos(2πi|ξ|t)ĝ +
sin(2πi|ξ|t)

2πi|ξ| ĥ.

These formulas give another representation for the solutions of the wave equation. Since
we know what they must be for n = 1, 2, 3, then we know that u(t) must be as in §12.6,
§12.10 and §12.9, respectively.

Remark 14.32. Notice that the function ξ 7→ 1
|ξ| belongs to L

1
loc(Rn) for n ≥ 2. Since it

also decays at infinity, this function is a tempered distribution. So, it has a well defined
Fourier transform. You can try to compute it: I don’t know what it should be, or even if
there is a closed formula for it.

Exercise 14.33. Assuming g, h ∈ S , write u(t) from the formula

û(t) = cos(2πi|ξ|t)ĝ +
sin(2πi|ξ|t)

2πi|ξ| ĥ.

♦
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§14.13. Applications to PDE: Bessel potentials. (See [5, §4.3, p.191])

Exercise 14.34 (Bessel Potentials). Using the Fourier transform, give a representation
to the solutions of

−4u+ u = f.

Hint: See [5, §4.3, p.191]. ♦

§14.14. Applications to PDE: Eigenfunctions of the Laplacian.

Exercise 14.35 (Eigenfunctions of the Laplacian). Using the Fourier transform, give a
representation to the solutions of

−4u = λu,

for λ ∈ C. For which λ there exists a solution? (see also §17.1) ♦
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Part 3. Sobolev Spaces

15. Sobolev spaces

§15.1. Definition of sobolev space. Let Ω ⊂ Rn open. We have seen in §13.5 that
functions u ∈ L1

loc(Ω) are distributions, and as such they have all derivatives Dαu. We
are interested in those functions whose distributional derivatives are in fact integrable
functions.

For m ∈ N and p ∈ [1,+∞], define

Wm,p(Ω) =
{
u ∈ L1

loc(Ω) : Dαu ∈ Lp(Ω) ∀α ∈ Nn with |α| ≤ m
}
.

Of these spaces, we also have a “loc” version:

Wm,p
loc (Ω) =

{
u ∈ L1

loc(Ω) : Dαu ∈ Lploc(Ω) ∀α ∈ Nn with |α| ≤ m
}
.

§15.2. Sobolev spaces are Banach spaces. We endow Wm,p(Ω) with the norm

‖u‖Wm,p(Ω) = ‖u‖Wm,p =
∑
|α|≤m

‖Dαu‖Lp(Ω).

In fact, we may well take in place of ‖u‖Wm,p(Ω) other norms, such as

(
∑
|α|≤m

‖Dαu‖qLp(Ω))
1/q, for q ∈ [1,+∞), or max

|α|≤m
‖Dαu‖Lp(Ω).

See Exercise 15.1.

Exercise 15.1. For x ∈ RN and q ∈ [1,+∞), define

‖x‖q = (

N∑
j=1

|xj |q)1/q, and ‖x‖∞ = max
j≤N
|xj |.

Show that for every q1, q2 ∈ [1,+∞] there is L such that
1

L
‖x‖q2 ≤ ‖x‖q1 ≤ L‖x‖q2 .

Deduce that all norms on Wm,p(Ω)

(
∑
|α|≤m

‖Dαu‖qLp(Ω))
1/q, for q ∈ [1,+∞), or max

|α|≤m
‖Dαu‖Lp(Ω).

are biLipschitz equivalent to ‖u‖Wm,p(Ω). ♦

Lemma 15.2. Let Ω ⊂ Rn be an open set and p ∈ [1,∞]. Let {uj}j∈N ⊂ Lp(Ω) be a
sequence of functions, and v, w ∈ Lp(Ω). Fix ` ∈ {1, . . . , n}. Suppose that uj → v in
Lp(Ω) and that ∂`uj → w in Lp(Ω). Then ∂`v = w.

Proof. First of all, we claim that uj → v in D ′(Ω). Indeed, if φ ∈ D(Ω), then∣∣∣∣∫
Ω

uj(x)φ(x) dx−
∫

Ω

v(x)φ(x) dx

∣∣∣∣ ≤ ∫
Ω

|uj(x)− v(x)||φ(x)| dx

(Hölder)
≤ ‖uj − v‖Lp(Ω)‖φ‖Lp′ (Ω) → 0.

Therefore, as distributions, uj → v. It follows that ∂`uj → ∂`v in D ′(Ω), see Exer-
cise 13.15.

Since ∂`uj → w in Lp(Ω), we also have ∂`uj → w in D ′(Ω). Therefore, ∂`v = w, for
the uniqueness of the limit in D ′(Ω). �

Proposition 15.3. The normed vector space (Wm,p(Ω), ‖ · ‖Wm,p(Ω)) is a Banach space.

Proof. The proof that ‖·‖Wm,p(Ω) is in fact a norm is left as an exercise, see Exercise 15.4.
To show that Wm,p(Ω) is complete, let {uj}j∈N ⊂ Wm,p(Ω) be a Cauchy sequence. It
follows that, for ever α ∈ Nn with |α| ≤ m, the sequence {Dαuj}j∈N ⊂ Lp(Ω) is a Cauchy
sequence. Since Lp(Ω) are Banach spaces, it follows that there are uα ∈ Lp(Ω) such that
Dαuj → uα in Lp(Ω). Iterating Lemma 15.2, we obtaind that Dαu0 = uα, and thus u0,
the limit of uj in Lp(Ω), is the limit of uj in Wm,p(Ω). �

Exercise 15.4. Show that ‖ · ‖Wm,p(Ω) is a norm on Wm,p(Ω). ♦
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Exercise 15.5. Show that Wm,p(Ω) is isometric to a closed subspace of Lp(Ω)N , where
N = #{α ∈ Nn : |α| ≤ m}. ♦

Exercise 15.6. Inspired by Lemma 15.2, we can say with no doubt that, if uj → u in
Wm,p(Ω), then uj → u in D ′(Ω). We may wonder if the converse is also true, that is: is
it true that, if uj → u in D ′(Ω) and u ∈ Wm,p(Ω), then uj → u in Wm,p(Ω)? If this was
a video, you would pause it to think about the question yourself. However, this is not a
video: can you stop reading?

The answer is not hard. The point is to find a sequence of functions vj on R that
converge distributionally to 0, but have Lp norm equal to 1. For instance, take vj(x) =∑2j

m=0 1[m2−j ,(m+1)2−j)(x). Then |vj | = 1[0,1), and
∫
R vjφ dx → 0 for every φ ∈ D(R)

(check it!). We have thus a sequence vj → 0 in D ′(R) with ‖vj‖Lp = 1 for all j. Take
uj(x) =

∫ x
−∞ vj(t) dt: check that uj(2) = 0. So, uj is an absolutely continuous function

R→ R with compact support. Moreover, uj → 0 distributionally (check it!) but uj does
not converge to 0 in W 1,1(R). So, the answer is no. ♦

Exercise 15.7. An example of weird Sobolev functions. For β ∈ R, define uβ : Rn → R,

uβ(x) = |x|β .
(1) Show that uβ ∈ Lploc(Rn) whenever β > −n.
(2) Show that uβ ∈W 1,p

loc (Rn) for all β > 1− n.
(3) Take an enumeration {qk}k∈N = Qn∩B(0, 1) of points with rational coordinates inside

the unit ball. Define

wβ(x) =

∞∑
k=1

uβ(x− qk)

2k
.

Notice that, since uβ ≥ 0, then wβ(x) ∈ [0,+∞] is well defined for every x ∈ Rn.
Show that, if β > 1− n, then wβ ∈W 1,p

loc (Rn).
I want to remark that, if n ≥ 2, then 1 − n < 0 and thus we can take β < 0: in these
cases, wβ has a “pole” at every point in Qn ∩B(0, 1). ♦

§15.3. Smooth approximation of Sobolev functions: characterization of Sobolev
spaces. We are going to prove the following theorem:

Theorem 15.8. Let Ω ⊂ Rn, p ∈ [1,+∞) and m ∈ N. A distribution u ∈ D ′(Ω) belongs
to Wm,p(Ω) if and only if there is a sequence {uj}j∈N ⊂ C∞(Ω) ∩ Wm,p(Ω) such that
limj→∞ ‖uj − u‖Wm,p(Ω) = 0.

In other words, Wm,p(Ω) is the closure of C∞(Ω)∩Wm,p(Ω) in the norm ‖ · ‖Wm,p(Ω).

§15.4. Smooth approximation of Sobolev functions: local approximation by
convolution. Recall that we say that w ∈ C∞(Ω̄) if there is an open set V ⊂ Rn
with Ω̄ ⊂ V , and there is a function w̃ ∈ C∞(V ) such that w̃|Ω = w. Notice that, if
Ω is bounded, then Ω̄ is compact and thus, if w ∈ C∞(Ω̄) then w ∈ W p,m(Ω) for all
p ∈ [1,+∞] and m ∈ N. We will show three approximation results

Theorem 15.9. Let Ω ⊂ Rn open. Let {ρε}ε>0 be a standard family of mollifiers. For
ε > 0, define

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}
= {x ∈ Ω : B̄(x, ε) ⊂ Ω}

For u ∈ L1
loc(Ω), define uε : Ωε → C, uε = u ∗ ρε; more precisely,

(139) uε = ((u1Ω) ∗ ρε)|Ωε .
If u ∈Wm,p

loc (Ω) and V b Ω is open, then uε → u in Wm,p(V ).

Proof. Recall that V b Ω means that the closure of V is compact and contained in Ω.
Notice also that there is δ > 0 such that V ⊂ Ωε for all ε ∈ (0, δ). So, the convergence
“uε → u in Wm,p(V )” makes sense eventually for ε→ 0.

From Proposition 13.57, we already know that the functions uε defined in (139) converge
to u1Ω in D ′(Rn) as ε→ 0. But be careful, this does not imply convergence in Wm,p(V ),
see Exercise 15.6. We need some more work, and use some specific property of ρε.
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Since, for every α ∈ Nn, we have Dαuε = (Dαu) ∗ ρε, we only need to show that, if u ∈
Lploc(Ω), then uε → u in Lp(V ) for every V b Ω. This is the content of Lemma 15.10. �

Lemma 15.10. Let Ω ⊂ Rn be an open set and u ∈ Lploc(Ω). If V b Ω, then limε→0 ‖uε−
u‖Lp(V ) = 0, where uε is defined as in (139).

Proof. Let ε̄ > 0 be such that B(V, ε̄) =
⋃
x∈V B(x, ε̄) b Ω. If x ∈ V and ε ∈ (0, ε̄), then

uε(x) =

∫
B(0,ε)

u(x− y)ρε(y) dy

=

∫
B(0,ε)

u(x− y)ρε(y)p · ρε(y)1−1/p dy

(Hölder)
≤

(∫
B(0,ε)

|u(x− y)|pρε(y) dy

)1/p(∫
B(0,ε)

ρε(y) dy

)1/p′

=

(∫
B(0,ε)

|u(x− y)|pρε(y) dy

)1/p

.

Therefore, ∫
V

|uε(x)|p dx ≤
∫
V

∫
B(0,ε)

|u(x− y)|pρε(y) dy dx

=

∫
B(0,ε)

∫
V

|u(x− y)|pρε(y) dxdy

≤
∫
B(V,ε)

|u(x)|p dx.(140)

Next, fix η > 0. By Theorem 3.1, there exists g ∈ C(Ω) such that ‖g − u‖Lp(B(V,ε̄)) < η.
For ε ∈ (0, ε̄), we have

‖u− uε‖Lp(V ) ≤ ‖u− g‖Lp(V ) + ‖g − gε‖Lp(V ) + ‖gε − uε‖Lp(V )

(140)
≤ ‖g − u‖Lp(B(V,ε̄)) + ‖g − gε‖L∞(V )L

n(V ) + ‖g − u‖Lp(B(V,ε̄))

≤ 2η + ‖g − gε‖L∞(V )L
n(V ),

Since g is continuous and V is compact, we know that ‖g − gε‖L∞(V ) → 0 as ε → 0.
Therefore, there is ¯̄ε such that, if ε ∈ (0, ¯̄ε), then ‖u− uε‖Lp(V ) < 3η. �

§15.5. Smooth approximation of Sobolev functions: interior approximation.

Lemma 15.11. Let Ω ⊂ Rn be an open set. Then there are a countable set N ⊂ Ω and
r : N → (0,∞) such that

(15.11.a) for every x ∈ N , B(x, 2rx) ⊂ Ω,
(15.11.b) Ω ⊂ ⋃x∈N B(x, rx),
(15.11.c) for every y ∈ Ω, #{x ∈ N : y ∈ B(x, 2rx)} ≤ 25n <∞.

Moreover, are also functions {φx}x∈N such that, for each x ∈ N , φx ∈ C∞c (B(x, rx)),
0 ≤ φx ≤ 1, and such that

∑
x∈N φx(y) = 1 for every y ∈ Ω.

Proof. If Ω = Rn, the proof is left as an exercise. Suppose that Ω 6= Rn, that is, ∂Ω 6= ∅.
Define δ : Ω→ (0,+∞), δ(x) = dist(x, ∂Ω), and, for k ∈ Z,

Ωk = {x ∈ Ω : 2k ≤ δ(x) < 2k+1}.
For each k ∈ Z, let Nk ⊂ Ωk be a maximal 2k−3-separated set, that is, a subset of Ωk
such that, if x, y ∈ Nk, then B(x, 2k−3) ∩ B(y, 2k−3) = ∅, and for every z ∈ Ωk there is
x ∈ Nk with |z − x| < 2 · 2k−3 = 2k−2. The sets Nk are countable, thus N =

⋃
k∈Z Nk is

also countable. We claim that the set of points N with the radii rx = 2k−2 for x ∈ Nk is
the wanted set.

The requirement (15.11.a) is clear. It is also clear that

Ω ⊂
⋃
x∈N

B(x, rx) =
⋃
k∈Z

⋃
x∈Nk

B(x, 2k−2),
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and thus (15.11.b).
We need to show the upper bound in (15.11.c). Let y ∈ Ω and set A(y) = {x ∈ N :

y ∈ B(x, 2rx)}. Keep in mind that, if x ∈ Nk, then rx = 2k−2 and 2rx = 2k−1. Let j ∈ Z
such that y ∈ Ωj .

Notice that

(141) x ∈ Nk ⇒ B(x, 2k−1) ⊂ Ωk−1 ∪ Ωk ∪ Ωk+1.

Indeed, if z ∈ B(x, 2k−1), then

δ(z) ≤ δ(x) + 2k−1 < 2k+1 + 2k−1 ≤ 2k+2,

δ(z) ≥ δ(x)− 2k−1 ≥ 2k − 2k−1 = 2k−1.

From (141) we get that, if x ∈ Nk and y ∈ B(x, 2k−1), then k ∈ {j − 1, j, j + 1}. It
follows that A(y) ⊂ Nj−1 ∪Nj ∪Nj+1.

We thus have that A(y) ⊂ B(y, 2(j+1)−1) = B(y, 2j), and that balls of radius 2j−4

centered at points of A(y) are pairwise disjoint. By Exercise 15.12, we conclude that
#A(y) ≤ 25n.

The construction of the functions φx is left as an exercise. �

Exercise 15.12. Let j ∈ Z. Show that, if A ⊂ B(0, 2j) is such that, for every a1, a2 ∈ A
distinct, B(a1, 2

j−4) ∩B(a2, 2
j−4) = ∅, then #A ≤ 25n.

Hint: The union of the pairwise disjoint balls {B(a, 2j−4)}a∈A is a subset of B(0, 2j),
so its volume... ♦

Exercise 15.13. Construct the functions φx in Lemma 15.11. ♦

Theorem 15.14. Let Ω ⊂ Rn open. If u ∈W k,p(Ω), then there is a sequence {uj}j∈N ⊂
W k,p(Ω) ∩ C∞(Ω) such that uj → u in W k,p(Ω).

Proof. We use the following notation: if B is the ball B(x, r), then 2B is the ball B(x, 2r).
From Lemma 15.11, we get a partition of unity {φ`}`∈N and a countable family of balls

{B`}`∈N such that Ω =
⋃
`∈NB`, spt(φ`) ⊂ B`, and #{` : y ∈ 2B`} <∞ for all y ∈ Ω.

By Theorem 15.9, for every ` ∈ N and k ∈ N, there is εk > 0 such that the function

uk,` = (φ`u) ∗ ρεk

is supported in 2B` and ‖uk,` − φ`u‖Wm,p(2B`) <
1/k

2`
. Define

uk =
∑
`∈N

uk,`.

Notice that uk ∈ C∞(Ω), because each uk,` is smooth and the sum is locally finite.
Moreover,

‖uk − u‖Wm,p(Ω) ≤
∑
`∈N
‖uk,` − φ`u‖Wm,p(Ω)

[because spt(uk,` − φ`u) ⊂ 2B`] =
∑
`∈N
‖uk,` − φ`u‖Wm,p(2B`)

≤
∑
`∈N

1/k

2`
=

2

k
.

Therefore, uk → u in Wm,p(Ω). �

§15.6. Smooth approximation of Sobolev functions: global approximation. For
a proof of the following theorem, see [5, §5.3.3].

Theorem 15.15. Let Ω ⊂ Rn open with ∂U of class C1. If u ∈W k,p(Ω), then there is a
sequence {uj}j∈N ⊂W k,p(Ω) ∩ C∞(Ω̄) such that uj → u in W k,p(Ω).
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§15.7. The closure of smooth functions with compact support. Using Theo-
rem 3.1 and some smoothing, one can show that C∞c (Ω) is dense in Lp(Ω), see Exer-
cise 15.17 However, it is NOT true in general that C∞c (Ω) is dense in Wm,p(Ω).

Exercise 15.16. Show that, for every p ∈ [1,∞), the constant function u ≡ 1 belongs to
W 1,p((0, 1)), but it is not the limit in W 1,p of functions C∞c ((0, 1)). ♦

So, for Ω ⊂ Rn open, m ∈ N and p ∈ [1,+∞], we define

Wm,p
0 (Ω) = {u ∈Wm,p(Ω) : ∃{uj}j∈N ⊂ C∞c (Ω) such that uj → u in Wm,p(Ω)}.

Exercise 15.17. Show that C∞c (Ω) is dense in Lp(Ω). ♦

Theorem 15.18. For every m ∈ N and p ∈ [1,∞), Wm,p
0 (Rn) = Wm,p(Rn).

Proof. Given u ∈ Wm,p(Rn), we need to find a sequence {uj}j∈N ⊂ C∞c (Rn) that con-
verges to u in Wm,p(Rn). By Theorem 15.14 and a diagonal argument, we can assume
u ∈ C∞(Rn).

Let ζ : Rn → [0, 1] be a smooth function such that

B(0, 1) ⊂ {ζ = 1} ⊂ spt(ζ) ⊂ B̄(0, 2).

For R > 0 and x ∈ Rn, define ζR(x) = ζ(x/R). Notice that, for every R > 0, β ∈ Nn and
x ∈ Rn,

|DβζR(x)| = |R−|β|Dβζ(x/R)| ≤ 1

R|α|
‖Dβζ‖L∞(Rn).

We shall approximate u with ζRu as R→∞. Notice that, for R > 0 and α ∈ Nn, we have

‖Dαu−Dα(ζRu)‖Lp(Rn) ≤ ‖Dαu− ζRDαu‖Lp(Rn) +
∑
β≤α

(
α

β

)
‖DβζR ·Dα−βu‖Lp(Rn)

≤
(∫

Rn\B(0,R)

|Dαu(x)|p dx

)1/p

+
∑
β≤α

(
α

β

)
1

R|β|
‖Dαζ‖L∞(Rn)‖Dα−βu‖Lp(Rn).

Since

lim
R→∞

∫
Rn\B(0,R)

|Dαu(x)|p dx = 0,

we conclude that limR→∞ ‖u− ζRu‖Wm,p(Rn) = 0. �

§15.8. Sobolev inequalities: 1 ≤ p < n.

Theorem 15.19. Let n ≥ 2. If u ∈ C1
c (Rn),

(142)
(∫

Rn
|u(x)| n

n−1 dx

)n−1
n

≤
∫
Rn
|∇u(x)| dx.

Proof. Let u ∈ C1
c (Rn). For j ∈ {1, . . . , n}, x ∈ Rn and y ∈ R we denote by u(x|y) the

evaluation u(x|jy) = u(x1, . . . , xj−1, y, xj+1, . . . , xn). Notice that, for every x ∈ Rn and
j ∈ {1, . . . , n},

u(x) =

∫ xj

−∞
∂ju(x|jyj) dyj .

Therefore, for every x ∈ Rn,

(143) |u(x)| n
n−1 ≤

n∏
j=1

(∫ ∞
−∞
|∂ju(x|jyj)| dyj

) 1
n−1

≤
n∏
j=1

(∫
R
|∇u(x|jyj)| dyj

) 1
n−1

.

We claim that, for each ` ∈ {1, . . . , n}, we have
(144)∫

R`
|u(x)| n

n−1 dx≤` ≤
(∫

R`
|∇u(x)|dx≤`

) `
n−1

n∏
j=`+1

(∫
R`

∫
R
|∇u(x|jyj)| dyj dx≤`

) 1
n−1

.
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where dx≤` = dx1 · · · dx`. To prove (144) for ` = 1, we integrate (143) in x1:∫
R
|u(x)| n

n−1 dx1

(143)
≤
∫
R

n∏
j=1

(∫
R
|∇u(x|jyj)| dyj

) 1
n−1

dx1

=

(∫
R
|∇u(x|1y1)| dy1

) 1
n−1

∫
R

n∏
j=2

(∫
R
|∇u(x|jyj)| dyj

) 1
n−1

dx1

(General Hölder)
≤

(∫
R
|∇u(x)|dx1

) 1
n−1

n∏
j=2

(∫
R

∫
R
|∇u(x|jyj)| dyj dx1

) 1
n−1

.

Next, given (144) for ` = k ∈ {1, . . . , n− 1}, we prove the same for ` = k + 1 integrating
in xk+1:∫

R

∫
Rk
|u(x)| n

n−1 dx≤k dxk+1

(144)
≤
∫
R

(∫
Rk
|∇u(x)|dx≤k

) k
n−1

n∏
j=k+1

(∫
Rk

∫
R
|∇u(x|jyj)| dyj dx≤k

) 1
n−1

dxk+1

=

(∫
Rk

∫
R
|∇u(x|k+1yk+1)|dyk+1 dx≤k

) 1
n−1

×

×
∫
R

(∫
Rk
|∇u(x)| dx≤k

) k
n−1

n∏
j=k+2

(∫
Rk

∫
R
|∇u(x|jyj)| dyj dx≤k

) 1
n−1

dxk+1

(General Hölder)
≤

(∫
Rk

∫
R
|∇u(x|k+1yk+1)| dyk+1 dx≤k

) 1
n−1

×

×
(∫

R

∫
Rk
|∇u(x)| dx≤k dxk+1

) k
n−1

n∏
j=k+2

(∫
R

∫
Rk

∫
R
|∇u(x|jyj)| dyj dx≤k dxk+1

) 1
n−1

,

which gives (144) for ` = k + 1.
Finally, notice that (144) for ` = n is (142). �

Corollary 15.20. Let n ≥ 2. Then (142) holds for all u ∈W 1,1(Rn).

Proof. Let u ∈W 1,1(Rn). By Theorem 15.18, there is a sequence {uj}j∈N ⊂ C1
c (Rn) such

that uj → u in W 1,1(Rn). Notice that,

‖uj − uk‖
L

n
n−1

(142)
≤ ‖∇(uj − uk)‖L1 ≤ ‖uj − uk‖W1,1 .

Therefore, {uj}j is a Cauchy sequence in L
n
n−1 (Rn). Since uj → u in L1 already, then uj

must converge to u in L
n
n−1 (Rn) too. We conclude that

‖u‖
L

n
n−1

= lim
j→∞

‖uj‖
L

n
n−1

(142)
≤ lim

j→∞
‖∇uj‖L1 = ‖∇u‖L1 .

�

Exercise 15.21. In Theorem 15.19 we required n ≥ 2. What happens when n = 1? ♦

§15.9. A remark on the isoperimetric inequality. The inequality (142) has a geo-
metric meaning: it is indeed equivalent to the isoperimetric inequality. More precisely,
the characteristic function 1E of a measurable E ⊂ Rn belongs to L1

loc(Rn) and thus it
defines a distribution: 1E ∈ D ′(Rn). Define the perimeter of E as the total variation of
DE, that is,

Per(E) = sup{
n∑
j=1

∂j1E [φj ] : φj ∈ D , ‖φj‖L∞ ≤ 1}.



INTRODUCTION TO PDE 91

In order to put this formula into perspective, we define for u ∈ D ′

|Du|(Rn) = sup{
n∑
j=1

∂ju[φj ] : φj ∈ D , ‖φj‖L∞ ≤ 1} ∈ [0,+∞].

It is clear that |Du|(Rn) <∞ if and only if |Du| is a Radon measure, as seen in Proposi-
tion 13.12. In this case, we say that u has bounded variation. The space of functions with
bounded variation, BV functions for short, is

BV(Rn) = {u ∈ L1(Rn) : |Du|(Rn) <∞}.
If u ∈ C∞c (Rn), then |Du|(Rn) =

∫
Rn |∇u| dx. One can show that (142) extends to BV

functions: if u ∈ BV(Rn), then

(145) ‖u‖
L

n
n−1
≤ |Du|(Rn).

The proof is by smooth approximation, similarly to the proof of Corollary 15.20. If we
apply (145) to 1E , we get

(146) |E|
n−1
n ≤ Per(E),

where |E| is the volume of E. This is the isoperimetric inequality in Rn. Equality in (146)
is attained only when E is an Euclidean ball.

In fact, one can show that from (146), using the coarea inequality one can get (142)
for u ∈ C1

c (Rn).

§15.10. Gagliardo–Nirenberg–Sobolev inequality. The Sobolev conjugate of p ∈
[1, n) is the number p∗ such that

1

p
− 1

p∗
=

1

n
, or, equivalently,

1

p∗
=

1

p
− 1

n
.

In other words,

p∗ =
np

n− p .

Notice that, (142) is (147) for p = 1.

Theorem 15.22 (Gagliardo–Nirenberg–Sobolev inequality). Let n ≥ 2 and p ∈ [1, n)
with Sobolev conjugate p∗ = np

n−p . There exists C ∈ R such that, for all u ∈ C1
c (Rn),

(147) ‖u‖Lp∗ (Rn) ≤ C‖∇u‖Lp(Rn).

In fact, we can take C = p(n−1)
n−p = p∗

1∗ .

Proof. If p = 1, then (147) is (142). Therefore, we assume p > 1.
Fix u ∈ C1

c (Rn). Let γ > 1 and set v = |u|γ . By Exercise 15.23, v ∈ C1
c (Rn). Therefore,

by Corollary 15.20, we have(∫
Rn
|u|γ n

n−1 dx

)n−1
n

=

(∫
Rn
v

n
n−1 dx

)n−1
n

(142)
≤
∫
Rn
|∇v(x)| dx

= γ

∫
Rn
|u|γ−1|∇u(x)|dx

(Hölder)
≤ γ

(∫
Rn
|u|

p
p−1

(γ−1)
dx

) p−1
p
(∫

Rn
|∇u(x)|p dx

)1/p

.

We want γ n
n−1

= p
p−1

(γ − 1), that is γ = p(n−1)
n−p . Notice that, if p ∈ (1, n), then γ > 1. If

u ≡ 0, then (147) trivially holds. So, we can assume u 6= 0, and thus the above estimates,
with this γ, gives(∫

Rn
|u|γ n

n−1 dx

)n−1
n
− p−1

p

≤ γ
(∫

Rn
|∇u(x)|p dx

)1/p

.

A direct computations gives γ n
n−1

= p∗ and n−1
n
− p−1

p
= 1

p∗ . So, we have (147). �
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Exercise 15.23. Show that, if u ∈ C1
c (Rn) and γ > 1, then |u|γ ∈ C1

c (Rn) and ∇(|u|γ) =
γ|u|γ−1∇u.

Hint: on the set {u 6= 0}, there the statement is trivial. What remains to show is that,
if u(x) = 0, then |u|γ is differentiable at x with derivative equal to 0. ♦

Corollary 15.24. Let n ≥ 2 and p ∈ [1, n) with Sobolev conjugate p∗ = np
n−p . Then (147)

holds for all u ∈W 1,p(Rn).

Proof. Let u ∈W 1,p(Rn). By Theorem 15.18, there is a sequence {uj}j∈N ⊂ C1
c (Rn) such

that uj → u in W 1,p(Rn). Notice that,

‖uj − uk‖Lp∗
(147)
≤ ‖∇(uj − uk)‖Lp ≤ ‖uj − uk‖W1,p .

Therefore, {uj}j is a Cauchy sequence in Lp
∗
(Rn). Since uj → u in L1 already, then uj

must converge to u in Lp
∗
(Rn) too. We conclude that

‖u‖Lp∗ = lim
j→∞

‖uj‖Lp∗
(147)
≤ lim

j→∞
‖∇uj‖Lp = ‖∇u‖Lp .

�

§15.11. Sobolev inequalities: n < p <∞. Morrey’s inequality.

Theorem 15.25 (Morrey’s inequality). Let n ≥ 2 and p ∈ (n,∞). There is C ∈ Rn such
that, for every o ∈ R, R > 0 and u ∈ W 1,p(B(o, 4R)), and for two every Lebesgue points
x, y ∈ B(o,R) of u (thus, for a.e. x, y ∈ B(o,R)),

(148) |u(x)− u(y)| ≤ C|x− y|1−n/p‖∇u‖Lp(B(o,4R)).

In particular, if Ω ⊂ Rn is open, then every u ∈ W 1,p
loc (Ω) has a locally (1 − n/p)-Hölder

continuous representative.

The constant C, which depends on p and n, can be taken to be C = 2n(nωn)
p−1
p

ωn−1

(
p−1
p−n

) p−1
p .

We shall prove Theorem 15.25 after a few intermediate statements.

Proposition 15.26. For every n ≥ 2 there is C ∈ R such that, for every u ∈ C1(Rn),
every x ∈ Rn and every r > 0,

(149) −
∫
B(x,r)

|u(y)− u(x)| dy ≤ C
∫
B(x,r)

|∇u(y)|
|y − x|n−1

dy.

The constant C can be taken equal to C = 1
ωnn

.

Proof. ∫
B(x,r)

|u(y)− u(x)|dy =

∫ r

0

∫
∂B(x,s)

|u(y)− u(x)|dS(y) ds

=

∫ r

0

∫
∂B(0,1)

|u(x+ sz)− u(x)|sn−1 dS(z) ds

=

∫ r

0

∫
∂B(0,1)

∣∣∣∣∫ s

0

∇u(x+ sz) · z dt

∣∣∣∣ sn−1 dS(z) ds

≤
∫ r

0

∫
∂B(0,1)

∫ s

0

|∇u|(x+ sz) dtsn−1 dS(z) ds

=

∫ r

0

∫ s

0

∫
∂B(0,1)

|∇u|(x+ sz)

tn−1
tn−1 dS(z) dtsn−1 ds

=

∫ r

0

∫
B(x,s)

|∇u|(y)

|y − x|n−1
dysn−1 ds

≤
∫ r

0

∫
B(x,r)

|∇u|(y)

|y − x|n−1
dysn−1 ds

=
rn

n

∫
B(x,r)

|∇u|(y)

|y − x|n−1
dy.

Since the volume of B(x, r) is ωnrn, then we obtain (149) with C = 1
ωnn

. �
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Exercise 15.27. Compute left and right hand sides of (149) for u(y) = |y|. ♦

Remark 15.28. Proposition 15.26 is important because the integral kernel in the right-
hand side of (149) is the famous Riesz potential.

Exercise 15.29. Show that, for every n ≥ 2, for every u ∈ C1(Rn), every x ∈ Rn and
every r > 0, ∣∣∣∣∣−

∫
B(x,r)

u(y) dy − u(x)

∣∣∣∣∣ ≤ −
∫
B(x,r)

|u(y)− u(x)|dy.

Solution. Since −
∫
B(x,r)

dy = 1, we have∣∣∣∣∣−
∫
B(x,r)

u(y) dy − u(x)

∣∣∣∣∣ =

∣∣∣∣∣−
∫
B(x,r)

(u(y)− u(x)) dy

∣∣∣∣∣ ≤ −
∫
B(x,r)

|u(y)− u(x)|dy.

♦

Proposition 15.30. For every n ≥ 2 and p ∈ (n,+∞), there is C(p, n) ∈ R such that,
for every u ∈ C1(Rn), every x ∈ Rn and every r > 0,

(150) −
∫
B(x,r)

|u(y)− u(x)| dy ≤ C(p, n)r
1−n

p ‖∇u‖Lp(B(x,r)).

The constant C(p, n) can be taken equal to C(p, n) = (nωn)
− 1
p

(
p−1
p−n

) p−1
p .

Proof. We simply apply the Hölder inequality to (149):

−
∫
B(x,r)

|u(y)− u(x)| dy
(149)
≤ 1

ωnn

∫
B(x,r)

|∇u(y)|
|y − x|n−1

dy

(Hölder)
≤ 1

ωnn

(∫
B(x,r)

|∇u(y)|p dy

) 1
p
(∫

B(x,r)

1

|y − x|(n−1) p
p−1

dy

) p−1
p

.

Notice that, using polar coordinates,∫
B(x,r)

1

|y − x|(n−1) p
p−1

dy =

∫ r

0

nωns
n−1 1

s
(n−1) p

p−1

ds

= nωn

∫ r

0

s
−n−1
p−1 ds

= nωn
p− 1

p− nr
p−n
p−1 ,

where p > n ensures that −n−1
p−1

> −1 and thus that the above integral is finite. Therefore,(∫
B(x,r)

1

|y − x|(n−1) p
p−1

dy

) p−1
p

=

(
nωn

p− 1

p− n

) p−1
p

r
p−n
p ,

from which we conclude (149) with C(p, n) = (nωn)
p−1
p
−1
(
p−1
p−n

) p−1
p

= (nωn)
− 1
p

(
p−1
p−n

) p−1
p .

Finally, since We have obtained �

Remark 15.31. For W ⊂ Rn bounded and with positive volume, and u ∈ L1
loc(Rn),

define

uW = −
∫
W

u(y) dy =
1

|W |

∫
W

u(y) dy,

where |W | = L n(W ) is the volume of W . In the proof of Proposition 15.33, we will
use an idea that is worth to keep in mind and understand correctly. Suppose we have
two points x, z ∈ Rn with r = |x − z|, and set W = B(x, r) ∩ B(z, r). Clearly we have
|u(x)−u(z)| ≤ |u(x)−uW |+ |uW −u(z)| ≤ −

∫
W
|u(y)−u(x)|dy+−

∫
W
|u(y)−u(z)|dy. We

now do the following:

−
∫
W

|u(y)− u(x)| dy =
|B(x, r)|
|W |

1

|B(x, r)|

∫
W

|u(y)− u(x)| dy
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≤ |B(x, r)|
|W |

1

|B(x, r)|

∫
B(x,r)

|u(y)− u(x)| dy

=
|B(x, r)|
|W | −

∫
B(x,r)

|u(y)− u(x)| dy.

Now we have that |B(x,r)|
|W | = |B(x,r)|

|B(x,r)∩B(z,r)| is a constant that depends only on n. Apart of
computing it explicitely, see Exercise 15.32, we can convince ourselves that it is a constant
because, clearly, for every v ∈ Rn, λ > 0 and O ∈ O(n),

|B(x+ v, r)|
|B(x+ v, r) ∩B(z + v, r)| =

|B(x, λr)|
|B(x, λr) ∩B(z, λr)| =

|B(Ox, r)|
|B(Ox, r) ∩B(Oz, r)| .

So, |B(x,r)|
|B(x,r)∩B(z,r)| = |B(0,1)|

|B(0,1)∩B(e1,1)| .

Exercise 15.32. Compute |B(x,r)|
|B(x,r)∩B(z,r)| .

Solution. First check that B(0, 1) ∩ B(e1, 1) = {(y1, y
′) ∈ Rn : y1 ∈ (0, 1), y′ ∈

Rn−1, |y′|2 ≤ y2
1 , |y′|2 ≤ 1−y2

1}. Then check |B(0, 1)∩B(e1, 1)| = 2
∫ 1/2

0
ωn−1y

n−1
1 dy1 =

ωn−1

n2n−1 . Finally,
|B(x,r)|

|B(x,r)∩B(z,r)| = |B(0,1)|
|B(0,1)∩B(e1,1)| = nωn2n−1

ωn−1
. ♦

Proposition 15.33 (Morrey’s inequality for smooth functions). For every n ≥ 2 and
p > n, there is C ∈ R such that, for every o ∈ R, R > 0 and u ∈ C1(B(o, 3R)),

(151) ∀x, y ∈ B(o,R) |u(x)− u(y)| ≤ C|x− y|1−n/p‖∇u‖Lp(B(o,3R)).

The constant C, which depends on p and n, can be taken to be C = 2n(nωn)
p−1
p

ωn−1

(
p−1
p−n

) p−1
p .

Proof. Let x, y ∈ B(o,R), and set r = |x− y| ≤ 2R and W = B(x, r)∩B(y, r). Using the
argument described in Remark 15.31, with constant C = |B(0,1)|

|B(0,1)∩B(e1,1)| = nωn2n−1

ωn−1
(see

Exercise 15.32 for the explicit value of C),

|u(x)− u(y)| ≤ |u(x)− uW |+ |uW − u(y)|

≤ −
∫
W

|u(z)− u(x)| dz +−
∫
W

|u(z)− u(y)| dz

≤ C−
∫
B(x,r)

|u(z)− u(x)| dz + C−
∫
B(y,r)

|u(z)− u(y)| dz

(150)
≤ CC(p, n)r

1−n
p ‖∇u‖Lp(B(x,r)) + CC(p, n)r

1−n
p ‖∇u‖Lp(B(y,r))

(∗)
≤ 2CC(p, n)|x− y|1−np ‖∇u‖Lp(B(o,3R)).

In (∗) we have used thatB(x, r) ⊂ B(x, 2R) ⊂ B(o, 3R). Since C(p, n) = (nωn)
− 1
p

(
p−1
p−n

) p−1
p ,

2CC(p, n) =
2n(nωn)

p−1
p

ωn−1

(
p− 1

p− n

) p−1
p

.

�

Remark 15.34. The constant we have found is not necessarily optimal. Finding optimal
constants in Sobolev inequalities may be quite tricky. See Remark 15.35 for another
constant.

Remark 15.35. The proof presented here has been taken from Evans [5, §5.6.2]. Parvi-
ainen in [Parviainen] proves Proposition 15.33 with a slightly different approach. First,
they don’t go through the Riesz potential as in Proposition 15.26. Second, they use cubes
instead of balls. Third, the constant they get in (151) is C = 2np

p−n .

Exercise 15.36. For n ≥ 2 and p > n, which of these constants is better in Morrey’s
inequality?

A =
2n(nωn)

p−1
p

ωn−1

(
p− 1

p− n

) p−1
p

, B =
2np

p− n.

♦
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Exercise 15.37. Recall that a point x ∈ Rn is a Lebesgue point of u ∈ L1
loc(Rn) if

lim
r→0
−
∫
B(x,r)

|u(y)− u(x)|dy = 0.

Recall also that, if u ∈ L1
loc(Rn), then almost every x ∈ Rn is a Lebesgue point of u; see

[8, Theorem (3.20), p.93].
Let {ρε}ε>0 be a family of standard mollifiers on Rn. For u ∈ L1

loc(Rn), set uε = u∗ρε ∈
C∞(Rn). Show that

(152) ∀x ∈ Rn Lebesgue point of u, lim
ε→0

uε(x) = u(x).

Note that here we do not consider u “up to a set of measure zero”, but really a fixed
function u : Rn → C.

Solution. Notice that, for every y ∈ Rn, |ρε(y)| =
∣∣∣ ρ(y/ε)εn

∣∣∣ ≤ ‖ρ‖L∞
εn

. Recall also that

spt(ρε) ⊂ B̄(0, ε). Therefore,

|uε(x)− u(x)| =
∣∣∣∣∣
∫
B(x,ε)

u(x− y)ρε(y) dy − u(x)

∫
B(x,ε)

ρε(y) dy

∣∣∣∣∣
≤
∫
B(x,ε)

|u(x− y)− u(x)|ρε(y) dy

≤ ‖ρ‖L∞
εn

∫
B(x,ε)

|u(x− y)− u(x)| dy

= ‖ρ‖L∞ωn−
∫
B(x,ε)

|u(x− y)− u(x)| dy.

Therefore, if x is a Lebesgeue point of u, then limε uε(x) = u(x).
See [8, Theorem 8.15] for a more general statement (for mollifications that do not have

compact support). ♦

Proof of Theorem 15.25: Morrey’s inequality for Sobolev functions. Let u ∈W 1,p(B(o, 4R))

and x, y ∈ B(o,R) be two Lebesgue points of u.
Let {ρε}ε>0 be a family of standard mollifiers on Rn and denote by uε = u ∗ ρε ∈

C∞(Rn). By Exercise 15.37, by the Morrey’s inequality for smooth functions 15.33, and
by standard properties of mollifiers, we have

|u(x)− u(y)| (152)= lim
ε→0
|uε(x)− uε(y)|

(151)
≤ lim sup

ε→0
C|x− y|1−n/p‖∇uε‖Lp(B(o,3R))

= C|x− y|1−n/p lim sup
ε→0

‖(∇u)ε‖Lp(B(o,3R))

(110)
≤ C|x− y|1−n/p‖∇u‖Lp(B(o,4R)).

In the last step we use Young’s inequality (110) as follows: if ε < R, then there is a
cut-off function ζ ∈ C∞c (B(o, 4R) such that B̄(o, 3R+ ε) ⊂ {ζ = 1} and 0 ≤ ζ ≤ 1. Then
(ζ∇u)ε = (∇u)ε in B(o, 3R). So,

‖(∇u)ε‖Lp(B(o,3R)) = ‖(ζ∇u)ε‖Lp(B(o,3R)) ≤ ‖(ζ∇u)ε‖Lp(Rn)

= ‖ρε ∗ (ζ∇u)‖Lp(Rn) ≤ ‖ρε ∗ |ζ∇u|‖Lp(Rn)

(110)
≤ ‖ρε‖L1(Rn)‖ζ∇u‖Lp(Rn) ≤ ‖∇u‖Lp(B(o,4R)).

�

Exercise 15.38. Let n ≥ 2 and Ω ⊂ Rn open. Show that, if u ∈ Wm,p
loc (Ω) for some

m ≥ 1 and p > n, then u ∈ Cm−1(Ω). In particular, show that, for every p > n,⋂
m≥1

Wm,p
loc (Ω) = C∞(Ω).

♦
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§15.12. Difference quotients. Let Ω ⊂ Rn open. For ε > 0, define

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} = {x ∈ Ω : B̄(x, ε) ⊂ Ω}.
For u : Ω→ C, j ∈ {1, . . . , n} and h 6= 0, define ∆h

j u : Ω|h| → C as

∆h
j u(x) =

u(x+ hej)− u(x)

h
,

where ej is the j-th element of the standard basis of Rn.

Exercise 15.39. Let Ω ⊂ Rn open and h 6= 0. Show that, if u, v : Ω→ C, then, for every
j ∈ {1, . . . , n} and x ∈ Ω|h|,

(153) ∆h
j (uv)(x) = ∆h

j u(x)v(x+ hej) + u(x)∆h
j v(x).

♦

Exercise 15.40. Let Ω ⊂ Rn open and h 6= 0. Show that, if u, v : Ω → C and spt(v) ⊂
Ω|h|, then, for every j ∈ {1, . . . , n},

(154)
∫

Ω

∆h
j u(x)v(x) dx = −

∫
Ω

u(x)∆−hj v(x) dx.

Notice that, since spt(v) ⊂ Ω|h|, we have: first, if x ∈ spt(v), then x+ hej ∈ Ω; second, if
x ∈ spt(∆−hj v), then x ∈ spt(v) or x− hej ∈ spt(v), which implies x ∈ Ω. ♦

Exercise 15.41. Let Ω ⊂ Rn open and j ∈ {1, . . . , n}. Show that, if φ ∈ C1
c (Ω), then

(155) lim
h→0
‖∆h

j φ− ∂jφ‖L∞(Ω) = 0.

♦

Exercise 15.42. Let Ω ⊂ Rn open. Show that, if u ∈ L1
loc(Ω), then, for every j ∈

{1, . . . , n} and every φ ∈ C∞c (Ω),

(156) lim
j→0

∫
Ω

∆h
j u(x)φ(x) dx = ∂ju[φ],

where we see u ∈ D ′(Ω) as a distribution with distributional derivative ∂ju ∈ D ′(Ω). In
other words, ∆h

j u→ ∂ju in D ′(Ω).
Solution. Fix u, j and φ. Since spt(φ) is compact, there is ε > 0 so that φ ∈ C∞c (Ωε).

Since spt(φ) b Ωε, then there is δ > 0 such that B(spt(φ), δ) =
⋃
x∈spt(φ) B(x, δ) b Ωε.

Therefore,

lim sup
h→0

∣∣∣∣∫
Ω

∆h
j u(x)φ(x) dx− ∂ju[φ]

∣∣∣∣
(154)
= lim sup

h→0

∣∣∣∣−∫
Ω

u(x)∆−hj φ(x) dx+

∫
Ω

u(x)∂jφ(x) dx

∣∣∣∣
≤ lim sup

h→0

∫
Ω

|u(x)| · | −∆−hj φ(x) + ∂jφ(x)|dx

(Hölder)
≤ lim sup

h→0
‖u‖L1(B(spt(φ),δ)) · ‖ −∆−hj φ(x) + ∂jφ(x)‖L∞(Ω)

(155)
= 0.

♦

Proposition 15.43. Let Ω ⊂ Rn be an open set and p ∈ (1,+∞]. For every u ∈ Lp(Ω)
and j ∈ {1, . . . , n}, the following are equivalent:

(i) ∂ju ∈ Lp(Ω);
(ii) there exists C ∈ R such that, for every ε > 0, lim suph→0 ‖∆h

j u‖Lp(Ωε) ≤ C.
Moreover, for every ε > 0 and h with |h| < ε,

(157) ‖∆h
j u‖Lp(Ωε) ≤ ‖∂ju‖Lp(Ω).
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Proof. (i)⇒ (ii): case p ∈ (1,∞). Let u ∈ C1(Ω) and ε > 0. For |h| < ε and p ∈ [1,+∞],
we have

(158)

∫
Ωε

|∆h
j u(x)|p dx =

∫
Ωε

∣∣∣∣u(x+ hej)− u(x)

h

∣∣∣∣p dx

(163)
=

∫
Ωε

∣∣∣∣∫ 1

0

∂ju(x+ thej) dt

∣∣∣∣p dx

(Hölder)
≤

∫
Ωε

∫ 1

0

|∂ju(x+ thej)|p dt dx

=

∫ 1

0

∫
Ωε

|∂ju(x+ thej)|p dx dt

≤
∫ 1

0

∫
Ωε−|h|

|∂ju(x)|p dxdt =

∫
Ωε−|h|

|∂ju(x)|p dx.

We have shown (157) for smooth functions. Next, let u ∈ Lp(Ω) with ∂ju ∈ Lp(Ω).
Let {ρη}η>0 be a standard family of mollifiers and define uk = u ∗ ρ1/k : Ω1/k → C. For
1/k < ε− |h|, we have Ωε ⊂ Ωε−|h| ⊂ Ω1/k and thus, from (158),

(159)
∫

Ωε

|∆h
j uk(x)|p dx ≤

∫
Ωε−|h|

|∂juk(x)|p dx.

Moreover, we know that uk → u and ∂juk → ∂ju in Lp(Ωε−|h|). We thus have, for |h| < ε,

‖∆h
j uk −∆h

j u‖Lp(Ωε)

=

(∫
Ωε

∣∣∣∣uk(x+ hej)− uk(x)

h
− u(x+ hej)− u(x)

h

∣∣∣∣p dx

)1/p

(Minkowski)
≤

(∫
Ωε

∣∣∣∣uk(x+ hej)− u(x+ hej)

h

∣∣∣∣p dx

)1/p

+

(∫
Ωε

∣∣∣∣u(x)− uk(x)

h

∣∣∣∣p dx

)1/p

≤ 2

h
‖uk − u‖Lp(Ωε−|h|).

Therefore, for each h 6= 0 with |h| < ε fixed, ∆h
j uk → ∆h

j u in Lp(Ωε−|h|) as k →∞. This
convergence allows us to extend the estimate (159) to the limit. We obtain (157) and
thus (ii).

(i)⇒ (ii): case p =∞. Let u ∈ C1(Ω) and ε > 0. For |h| < ε and x ∈ Ωε, we have

(160)

sup
x∈Ωε

|∆h
j u(x)| = sup

x∈Ωε

∣∣∣∣u(x+ hej)− u(x)

h

∣∣∣∣
= sup
x∈Ωε

∣∣∣∣∫ 1

0

∇u(x+ thej) · hej
h

dt

∣∣∣∣
≤ sup
x∈Ω
|∂ju(x)| = ‖∂ju‖L∞(Ω).

We have shown (157) for smooth functions. Next, let u ∈ L∞(Ω) with ∂ju ∈ L∞(Ω).
Like in the previous case, define uk = u ∗ ρ1/k : Ω1/k → C, so that uk ∈ C1(Ω1/k). For
1/k < ε− |h|, we have Ωε ⊂ Ωε−|h| ⊂ Ω1/k. [...]

Using Exercise 15.45, we have that, for fixed h and j, there is a full measure set
E ⊂ Ωε−|h|, such that, for every x ∈ E, we have limk→∞ uk(x) = u(x), and limk→∞ uk(x+
hej) = u(x+ hej). Moreover, ‖∂juk‖L∞(Ω1/k) ≤ ‖∂ju‖L∞(Ω). Therefore, for every x ∈ E,

|∆h
j u(x)| =

∣∣∣∣u(x+ hej)− u(x)

h

∣∣∣∣
= lim
k→∞

∣∣∣∣uk(x+ hej)− uk(x)

h

∣∣∣∣
(160)
≤ lim sup

k→∞
‖∂juk‖L∞(Ω1/k)

≤ ‖∂ju‖L∞(Ω).
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We obtain (157) and thus (ii) for p =∞ too.
(ii)⇒ (i). Fix ε > 0. If p ∈ (1,+∞), then Lp(Ωε) is the dual of Lp

′
(Ωε), where

p′ = p
p−1

. If p =∞, then the same is true with p′ = 1.
Since lim suph→0 ‖∆h

j u‖Lp(Ωε) ≤ C < ∞, we can apply the Banach–Alaoglu Theo-
rem 15.46. Therefore, there is a sequence {hk}k∈N ⊂ (0, ε) with limk→∞ hk = 0 and there
is vε ∈ Lp(Ωε) such that

(161) ‖vε‖Lp(Ωε) ≤ C

and, for every φ ∈ Lp′(Ω),

(162) lim
k→∞

∫
Ωε

∆
hk
j u(x)φ(x) dx =

∫
Ωε

vε(x)φ(x) dx.

In particular, C∞c (Ωε) ⊂ Lp
′
(Ωε). Combining (156) with (162), we get vε = ∂ju, that

is, the distributional derivative ∂ju of u on Ωε is in fact a function in Lp(Ωε).
By the locality of distirbutions, we obtain that ∂ju is a function on Ω that satisfies,

by (161), ‖∂ju‖Lp(Ωε) ≤ C for all ε > 0. Therefore, ‖∂ju‖Lp(Ω) ≤ C. �

Recall that the dual of L1 is L∞, although the dual of L∞ is not L1

Exercise 15.44. Suppose u ∈ C1(Ω), x ∈ Ω, v ∈ Rn such that x+ tv ∈ Ω for all t ∈ [0, 1].
Then

(163) u(x+ v)− u(x) =

∫ 1

0

∇u(x+ tv) · v dt.

♦

Exercise 15.45. Let Ω ⊂ Rn, {ρη}η>0 a standard family of mollifiers, and u ∈ L1
loc(Ω).

Define uε = u ∗ ρε : Ωε → C. Show that, for every x ∈ Ωε,

uε(x) ≤ ‖u‖L∞(B(x,ε)).

Moreover, for almost every x ∈ Ω, limε→0 uε(x) = u(x).
Find an example where u ∈ L∞(Ω) but, for every h > 0, lim infε→0 ‖uε−u‖L∞(Ωh) > 0.
Hint for the example. Take Ω = (−1, 1) ⊂ R (or Ω = R), and u = 1(0,1)... ♦

Theorem 15.46 (Banach–Alaoglu Theorem). Let (V, ‖ · ‖) be a normed space, and let
(V ′, ‖ · ‖∗) be the dual space endowed with the operator norm

‖α‖∗ = sup{α[x] : x ∈ V, ‖x‖ ≤ 1}, ∀α ∈ V ′.
If {αk}k∈N ⊂ V ′ is a bounded sequence, that is, supk∈N ‖αk‖∗ < ∞, then there exists a
unique α∞ ∈ V ′ which is the weak* limit of αk, that is αk

∗
⇀ α∞. More explicitly, for

every x ∈ V ,

lim
k→∞

αk[x] = α∞[x].

Moreover,

‖α∞‖∗ ≤ lim inf
k→∞

‖αk‖∗.

Proof. See https://en.wikipedia.org/wiki/Banach\T1\textendashAlaoglu_theorem .
�

Theorem 15.47 (Characterization of Sobolev spaces with differential quotients). Let
Ω ⊂ Rn be an open set and u ∈ L1

loc(Ω). For every p ∈ (1,+∞], the following are
equivalent

(i) u ∈W 1,p(Ω);
(ii) u ∈ Lp(Ω) and there exists C > 0 such that, for every j ∈ {1, . . . , n} and every

ε > 0, lim suph→0 ‖∆h
j u‖Lp(Ωε) ≤ C.

Proof. This is a direct consequence of Proposition 15.43. �

https://en.wikipedia.org/wiki/Banach\T1\textendash Alaoglu_theorem
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§15.13. Differentiability a.e. for n < p ≤ ∞. For Ω ⊂ Rn open, a function u : Ω→ C
is differentiable at x ∈ Ω if there exists a linear function α : Rn → C such that

(164) lim
y→x
|u(y)− u(x)− α[y − x]|

|y − x| = 0.

If u is differentiable at x, the linear function α in (164) is unique and is of the form
α[y − x] = ∇clu(x) · (y − x) for a vector ∇clu(x) ∈ Cn. We call this vector ∇clu(x) the
classical gradient of u at x. If u is C1, then it is clear that ∇clu(x) = ∇u(x) for every
x, where ∇u(x) is the gradient we have used so far. When u ∈ L1

loc(Ω), then we have a
distributional gradient ∇u ∈ D ′(Ω)n, which may be an element of Lp(Ω) in the case of
Sobolev functions, but we don’t know a priori that ∇u(x) = ∇clu(x).

In fact, it can be that u ∈ W 1,p(Ω) is not differentiable anywhere. Indeed, recall from
your course in Analysis, or simply prove it from (164), that if u is differentiable at x, then
u is continuous at x. It follows that the function constructed in Exercise 15.7, which is
nowhere continuous, is nowhere differentiable although it has a weak gradient in Lp.

Theorem 15.48. Let n ≥ 2 and p ∈ (n,+∞]. If Ω ⊂ Rn is open and u ∈W 1,p
loc (Ω), then,

for almost every x ∈ Ω, u is differentiable at x and ∇u(x) = ∇clu(x).

Proof. First, assume p ∈ (n,+∞). By Theorem 15.25, we can assume u continuous. By
Exercise 15.49, for almost every x ∈ Ω, we have

(165) lim
r→0
−
∫
B(x,r)

|∇u(y)−∇u(x)|p dx = 0.

Let x ∈ Ω be a point with (165). Let R > 0 be such that B(x, 4R) b Ω. Define
v : B(x, 4R)→ C by

v(y) = u(y)− u(x)−∇u(x) · (y − x), ∀y ∈ B(x, 4R).

Clearly, we have v ∈W 1,p(B(x, 4R))∩C0(B(x, 4R)) and ∇v(y) = ∇u(y)−∇u(x). There-
fore, applying Theorem 15.25 to v, we obtain for every y ∈ B(x,R),
|u(y)− u(x)−∇u(x) · (y − x)|

|x− y| =
|v(y)− v(x)|
|x− y|

(148)
≤ C|x− y|−np ‖∇u(y)−∇u(x)‖Lp(B(o,4R))

= C

(
ω

1/n
n 4R

|x− y|

)n/p(
−
∫
B(x,4R)

|∇u−∇u(x)|p dx

) 1
p

.

If we take R = |x− y|, this estimate combined with (165), gives

lim
y→x
|u(y)− u(x)−∇u(x) · (y − x)|

|x− y| = 0,

that is, ∇u(x) = ∇clu(x).
Finally, if p =∞, then we clearly have W 1,∞

loc (Ω) ⊂W 1,p
loc (Ω) for all p ∈ (n,∞). So, we

apply the result we have just proven. �

Exercise 15.49 (A variant of Lebesgue differentiation theorem). Let Ω ⊂ Rn open. Show
that, if f ∈ Lp(Ω), then for almost every x ∈ Ω we have

lim
r→0
−
∫
B(x,r)

|f(y)− f(x)|p dy = 0.

Solution. Look at [13, §1.5.7&§1.1.8]. It can be proven for f ∈ Lp(µ) with (X, d, µ) a
doubling metric measure space. ♦

§15.14. p = ∞: Lipschitz functions. Let Ω ⊂ Rn open. A function u : Ω → C is
L-Lipschitz for some L ∈ R if

∀x, y ∈ Ω, |u(x)− u(y)| ≤ L|x− y|.
Lipschitz functions are clearly continuous

Theorem 15.50. Let Ω ⊂ Rn open and convex. For every u ∈ L∞(Ω) and L ∈ R, the
following are equivalent
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(i) u has a L-Lipschitz representative, in the sense that, for almost every x, y ∈ Ω,
|u(x)− u(y)| ≤ L|x− y|;

(ii) u ∈W 1,∞(Ω) and ‖∇u‖L∞(Ω) ≤ L.
As as consequence, if u ∈W 1,∞(Ω), then u is ‖∇u‖L∞(Ω)-Lipschitz.

Proof. (i)⇒ (ii). If u : Ω→ C is L-Lipschitz, then, for every x ∈ Ω, j ∈ {1, . . . , n} and
h 6= 0 with |h| < dist(x, ∂Ω),

|∆h
j u(x)| =

∣∣∣∣u(x+ hej)− u(x)

h

∣∣∣∣ ≤ L.
Therefore, by Theorem 15.47, we obtain u ∈ W 1,∞(Ω). Moreover, using also Proposi-
tion 15.43, we have, for almost every x ∈ Ω,

|∇u(x)| ≤ max{|∂ju(x)| : j ∈ {1, . . . , n}} ≤ L.

So, ‖∇u‖L∞(Ω) ≤ L.
(ii)⇒ (i). We can use Morrey’s inequality, Theorem 15.25, to show that if u ∈

W 1,∞(Ω) then u is Lipschitz. We just need to notice that u ∈ W 1,p(B) for every B b Ω
and p ∈ (n,∞). Then, we take the limit p→∞ in (148), where the constant C = C(p, n)
remains bounded. However, in this way it is not evident that u is ‖∇u‖L∞(Ω)-Lipschitz.

So, we can apply another argument, just by usual mollification. One easily sees that
uε = u ∗ ρε ∈ C∞(Ωε) is a smooth function with |∇uε(x)| ≤ ‖∇u‖L∞(Ω) for every x ∈ Ωε.
Since uε is smooth, we can estimate for every x, y ∈ Ω, using convexity,

|uε(x)− uε(y)| =
∣∣∣∣∫ 1

0

∇uε(x+ t(y − x)) · (y − x) dt

∣∣∣∣ ≤ ‖∇u‖L∞(Ω)|x− y|.

Since uε → u uniformly on compact sets, then limε→0 |uε(x)− uε(y)| = |u(x)− u(y)|. �

Exercise 15.51. In Theorem 15.50 we used convexity of the set Ω. Give an example of
open set Ω that is connected but not convex where Theorem 15.50 fails. What can we say
in any case? ♦

Theorem 15.52 (Rademacher Theorem). If Ω ⊂ Rn is an open set and u : Ω → C is
Lipschitz, then u is differentiable almost every where in Ω.

Proof. This is a consequence of Theorem 15.50 and Theorem 15.48. �

§15.15. Compactness theorems: Ascoli–Arzelà. One of our main tools to prove
compactness is the following standard result

Theorem 15.53 (Ascoli–Arzelà). Let K be a compact metric space and F = {fk}k∈N ⊂
C(K) be a sequence of continuous functions K → C. Suppose that

(1) F is (equi)bounded, that is, there is C such that |f(x)| ≤ C for all f ∈ F and all
x ∈ K.

(2) F is equicontinuos, that is, for every ε > 0 there exists δ > 0 such that, if x, y ∈ K
and d(x, y) < δ, then |f(x)− f(y)| < ε for all f ∈ F .

Then there exists a subsequence {fkj}j∈N ⊂ F that converges uniformly on K.

§15.16. Compactness theorems: Rellich–Kondrachov for W 1,p
0 (Rn). Recall that a

linear operator L : A→ B between Banach spaces is compact if it maps bounded subsets
of A to pre-compact subsets of B. In other words, L is a compact operator if, for every
bounded sequence {ak}k∈N ⊂ A, there is a subsequence {Lakj}j∈N converging in B. We
shall prove that for certain p and q, the “identity map” W 1,p

0 (Ω) → Lq(Ω) is a compact
linear operator.

Remark 15.54. The proof is taken from [5, §5.5.7]. For a similar proof, see [3, Theorem
4.26]. For more general statements, see [1, Theorem 6.3].
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Lemma 15.55. Let n ≥ 1 and {ρε}ε>0 be a standard family of mollifiers. Let u ∈
W 1,1

loc (Rn) and define uε = u ∗ ρε. For every Ω ⊂ Rn, we have

(166)
∫

Ω

|uε(x)− u(x)|dx ≤ ε
∫
B(Ω,ε)

|∇u|(x) dx,

where, we recall, B(Ω, ε) =
⋃
x∈Ω B(x, ε).

Proof. First, assume u ∈ C1(Rn). Notice that, for every x ∈ Rn,

|uε(x)− u(x)| =
∣∣∣∣∫

Rn
ρε(y)(u(x− y)− u(x)) dy

∣∣∣∣
=

∣∣∣∣∫
Rn
ρε(y)

∫ 1

0

∇u(x− ty) · (−y) dtdy

∣∣∣∣
≤
∫
Rn

∫ 1

0

ρε(y)|∇u|(x− ty)|y| dtdy

[spt(ρε) ⊂ B(0, ε)] ≤ ε
∫
Rn

∫ 1

0

ρε(y)|∇u|(x− ty) dt dy.

Therefore,∫
Ω

|uε(x)− u(x)| dx ≤ ε
∫

Ω

∫
Rn

∫ 1

0

ρε(y)|∇u|(x− ty) dt dy dx

≤ ε
∫
Rn

∫ 1

0

ρε(y)

(∫
Ω

|∇u|(x− ty) dx

)
dt dy

≤ ε
∫
Rn

∫ 1

0

ρε(y) dtdy

(∫
B(Ω,ε)

|∇u|(x− ty) dx

)

= ε

∫
B(Ω,ε)

|∇u|(x− ty) dx.

Second, consider u ∈ W 1,1
loc (Rn) arbitrary. For every η ∈ (0, 1), we have (166) for the

smooth function uη. On the one hand, since (uη)ε = (u ∗ ρη) ∗ ρε = (u ∗ ρε) ∗ ρη, we have

lim
η→0
‖(uη)ε(x)− uη‖L1(Ω) = lim

η→0
‖(uε(x)− u)η‖L1(Ω)

(??)
= ‖uε(x)− u‖L1(Ω).

On the other hand,

lim
η→0
‖∇uη‖L1(B(Ω,ε))

(??)
= ‖∇u‖L1(B(Ω,ε)).

Therefore, we obtain (166) for u too. �

Exercise 15.56. Extend (166) of Lemma 15.55 to all u ∈ W 1,1(Rn). What can we say
for u ∈W 1,1

0 (Ω), when Ω ⊂ Rn is open. ♦

Lemma 15.57 (Interpolation inequality for Lp norms). Let 1 ≤ p ≤ q ≤ r ≤ ∞ and
θ ∈ [0, 1] such that

(167)
1

q
=
θ

p
+

1− θ
r

.

Then, whenever µ is a measure and u is µ-measurable function,

(168) ‖u‖Lq(µ) ≤ ‖u‖θLp(µ) · ‖u‖1−θLr(µ).

In particular, if u ∈ Lp(µ) ∩ Lr(µ), then u ∈ Lq(µ) for all q ∈ [p, r].

Proof. The identity (167) is equivalent to

1 =
qθ

p
+
q(1− θ)

r
=

1

p/(qθ)
+

1

r/(q(1− θ)) ,

that is, p
qθ

and r
q(1−θ) are Hölder conjugate exponents. Since they are both belong to

[1,+∞], we can apply the Hölder inequality:∫
|u|q dµ =

∫
|u|θq|u|(1−θ)q dµ
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(Hölder)
≤

(∫
|u|θq

p
qθ dµ

) qθ
p
(∫
|u|(1−θ)q

r
q(1−θ) dµ

) q(1−θ)
r

=
(
‖u‖θLp(µ) · ‖u‖1−θLr(µ)

)q
.

So, we get (168) by exponentiating by 1
q
. �

Lemma 15.58. Let n ≥ 1 and {ρε}ε>0 be a standard family of mollifiers. Let u ∈
W 1,1

loc (Rn) and define uε = u ∗ ρε. Then, for every p ∈ [1, n) and q ∈ [1, p∗), there exists
C ∈ R such that

(169) ‖uε − u‖Lq(Rn) ≤ Cεθ‖∇u‖θL1(Rn) · ‖∇u‖1−θLp(Rn),

where θ ∈ [0, 1] is such that 1
q

= θ + 1−θ
p∗ .

Proof. First, we apply the Interpolation inequality for Lp norms, Lemma 15.57, to get

‖uε − u‖Lq(Rn) ≤ ‖uε − u‖θL1(Rn) · ‖uε − u‖1−θLp
∗

(Rn)
.

Second, we apply the bound (166) from Lemma 15.55 to the first term ‖uε−u‖L1(Rn), and
the Gagliardo–Nirenberg–Sobolev Inequality (147) from Theorem 15.22 or Corollary 15.24
to the second term ‖uε − u‖Lp∗ (Rn). We thus get

‖uε − u‖θL1(Rn) · ‖uε − u‖1−θLp
∗

(Rn)
≤
(
ε‖∇u‖L1(Rn)

)θ · (CGNS‖∇u‖Lp(Rn)

)1−θ
.

We have thus obtained (169). �

Remark 15.59. In the inequalities (166) and (169), it might happen that the right-
hand side is +∞. The inequalities are still true, although they don’t provide any extra
information.

Proposition 15.60. Let n ≥ 2, p ∈ [1, n) and q ∈ [1, p∗). Suppose that {uk}k∈N ⊂
W 1,p(Rn) is a sequence such that there is R > 0 with spt(uk) ⊂ B(0, R) for all k ∈ N.
Suppose also that there exists M ∈ R such that ‖uk‖W1,p(Rn) ≤ M for all k ∈ N. Then,
there exists a subsequence {ukj}j∈N that is converging in Lq(Rn).

Proof. Let {ρε}ε>0 be a standard family of mollifiers. and define uεk = uk ∗ ρε.
We claim that there are C ∈ R and θ ∈ [0, 1] such that, for every ε > 0 and k ∈ N,

(170) ‖uεk − uk‖Lq(Rn) ≤ Cεθ.

Indeed, if we apply (169) from Lemma 15.58, we get

‖uεk − uk‖Lq(Rn)

(169)
≤ C(169)ε

θ‖∇u‖θL1(Rn) · ‖∇u‖1−θLp(Rn)

(Hölder)
≤ C(169)ε

θ‖∇u‖θLp(Rn) ·L n(B(0, R))θ/p
′ · ‖∇u‖1−θLp(Rn)

= C(169)ε
θ(ωnR

n)θ/p
′ · ‖∇u‖Lp(Rn)

≤ C(169)(ωnR
n)θ/p

′
Mεθ.

So, we have proven (170).
Notice that, for every ε > 0, k ∈ N, and x ∈ Rn,

|uεk(x)| ≤
∫
Rn
ρε(y)|u(x− y)| dy

(Hölder)
≤ ‖ρε‖Lp′ (Rn)‖u‖Lp(Rn)

=
‖ρ1‖Lp(Rn)

εn/p
‖u‖Lp(Rn)

≤ ‖ρ1‖Lp(Rn)

εn/p
M,
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and, similarly,

|∇uεk(x)| ≤
∫
Rn
ρε(y)|∇u(x− y)| dy

(Hölder)
≤ ‖ρε‖Lp′ (Rn)‖∇u‖Lp(Rn)

(174)
=

1

ε
n p
′−1
p′
‖ρ1‖Lp(Rn)‖∇u‖Lp(Rn)

=
‖ρ1‖Lp(Rn)

εn/p
‖∇u‖Lp(Rn)

≤ ‖ρ1‖Lp(Rn)

εn/p
M.

It follows that, for each ε ∈ (0, 1) fixed, the family {uεk}k∈N ⊂ C0
c (B(0, R + 1)) is

bounded and equicontinuous. By Ascoli–Arzelà Theorem 15.53, {uεk}k∈N is pre-compact
in C0

c (B(0, R+ 1)).
We apply a diagonal argument. First, let {u1

k1
j
}j∈N be a subsequence of {u1

k}k∈N that

is converging uniformly on B̄(0, R+1) to a function v1 ∈ C0
c (B̄(0, R+1)). Next, for every

m ∈ N≥2, there is a subsequence {u1/m
kmj
}j∈N of {u1/m

km−1
j

}j∈N that is converging uniformly

on B̄(0, R+ 1). to some vm ∈ C0
c (B̄(0, R+ 1)). Notice that, for every m ∈ N≥1,

lim sup
j→∞

‖u1/m

km−1
j

− vm‖Lp(Rn) ≤ lim sup
j→∞

‖u1/m

km−1
j

− vm‖L∞(B̄(0,R+1))L
n(Ω)1/p = 0.

Therefore, {u1/m
kmj
}j∈N is converging to vm also in Lq(Rn).

We claim that {ukmm}m∈N is a Cauchy sequence in Lq(Rn). Indeed, let δ > 0. Then
there is L ∈ N such that

(171) C(1/L)θ < δ.

Next, since {u1/L

kLj
}j∈N is a Cauchy sequence in Lq(Rn), then there is N ∈ N such that, for

every naturals a, b > N ,

(172) ∀a, b > N, ‖u1/L

kLa
− u1/L

kL
b

‖Lq(Rn) < δ.

We also assume N > L. Since we have taken always subsequences, if m > L then
{kma }a>N ⊂ {kLa }a>N . Therefore, (172) implies

(173) ∀a, b > N, ‖u1/L
kaa
− u1/L

kb
b

‖Lq(Rn) < δ.

It follows that, for every a, b > N ,

‖ukaa − ukbb‖Lq(Rn) ≤ ‖ukaa − u
1/L
kaa
‖Lq(Rn) + ‖u1/L

kaa
− u1/L

kb
b

‖Lq(Rn) + ‖u1/L

kb
b

− ukb
b
‖Lq(Rn)

(170)&(173)
≤ 2C(1/L)θ + δ

(171)
≤ 3δ.

We have proven our claim, that {ukmm}m∈N is a Cauchy sequence in Lq(Rn). �

Exercise 15.61. Let {ρε}ε>0 be a standard family of mollifiers on Rn. Show that, for
every p ∈ [1,+∞],

(174) ‖ρε‖Lp(Rn) =
1

ε
n p−1

p

‖ρ1‖Lp(Rn).

Solution. ∫
Rn
ρε(y)p dy =

∫
Rn

(
ρ1(y/ε)

εn

)p
dy

[z = y/ε, dz = dy/εn] =
1

εn(p−1)

∫
Rn
ρ1(z)p dz.

♦
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Exercise 15.62. In Proposition 15.60, can we take the subsequence {ukj}j∈N independent
of q? ♦

Exercise 15.63. Proposition 15.60 uses a general fact in metric spaces. Let (X, d) be a
complete metric space and {xmk }k∈N,m∈N∪{∞} ⊂ X. Suppose that:

(1) for every k ∈ N, {xmk }m∈N converges to x∞k , uniformly in k; explicitly, for every
ε > 0 there exists N ∈ N such that, for every m > N and for every k ∈ N,
d(xmk , x

∞
k ) < ε;

(2) For every m ∈ N (but not for m =∞), the set {xmk }k∈N is pre-compact in X.
Show that {x∞k }k∈N is pre-compact in X. ♦

§15.17. Extension domains. An open set Ω ⊂ Rn is called an extension domain if, for
every p ∈ [1,+∞], there exists Tp : W 1,p(Ω)→W 1,p(Rn) such that

(1) Tpu|Ω = u, for all u ∈W 1,p(Ω);
(2) Tp is bounded, that is, there is Cp such that ‖Tpu‖W1,1(Rn) ≤ Cp‖u‖W1,p(Ω), for

all u ∈W 1,p(Ω).
An example of a set that is NOT and extension domain, is the so called slit disk :

Ω = {(x, y) ∈ R2 : x2 + y2 < 1} \ {(x, 0) : x ≥ 0}.
However, there holds the following result

Theorem 15.64. If Ω ⊂ Rn is an open set with C1 boundary, then it is an extension
domain.

In fact, Theorem 15.64 can be pushed to Lipschitz boundary.

Proposition 15.65. Suppose Ω ⊂ Rn is an extension domain and Ω′ ⊂ Rn is an open
set such that B(Ω, r) ⊂ Ω′, for some r > 0. Then, for every p ∈ [1,+∞] there exists a
continuous extension operator Tp : W 1,p(Ω)→W 1,p

0 (Ω′).

Proof. Let ζ ∈ C∞c (Ω′) such that 0 ≤ ζ ≤ 1 and

Ω̄ ⊂ int{ζ = 1} ⊂ spt(ζ) ⊂ Ω′.

Since B(Ω, r) ⊂ Ω′, we can take ζ with ‖∇ζ‖L∞(Rn) ≤ 2/r. Let T̃p :: W 1,p(Ω)→W 1,p(Rn)
be a bounded extension operator given by Ω being and extension domain.

We claim that Tp : u 7→ ζT̃pu is the wanted operator. To prove our claim, we need to
show that u 7→ ζu defines a continuous operator W 1,p(Rn)→W 1,p

0 (Ω′). Clearly we have

‖ζu‖Lp(Ω′) ≤ ‖u‖Lp(Rn).

Moreover,

‖∇(ζu)‖Lp(Ω′) ≤ ‖ζ∇u‖Lp(Rn) + ‖u∇ζ‖Lp(Rn)

≤ ‖∇u‖Lp(Rn) +
2

r
‖u‖Lp(Rn)

≤ (1 + 2/r)‖u‖W1,p(Rn).

The claim is proven. �

Proposition 15.66. Let Ω ⊂ Ω′ ⊂ Rn and p ∈ [1,+∞). Define Tp : W 1,p
0 (Ω)→ Lp(Rn)

as Tpu = 1Ωu, i.e., Tp extends functions to zero outside Ω. Then Tp is a continuous
operator W 1,p

0 (Ω)→W 1,p(Ω′). In fact,

(175) ∀u ∈W 1,p(Ω) ‖1Ωu‖W1,p(Ω′) = ‖u‖W1,p(Ω)

Proof. If u ∈ C1
c (Ω), then ‖Tpu‖W1,p(Ω′) = ‖u‖W1,p(Ω). Since C

1
c (Ω) is dense in W 1,p

0 (Ω),
then we have (175). �

Remark 15.67. By Propositions 15.65 and 15.66, if Ω is a bounded extension domain,
we can assume that the extension operator takes values in the space of functions with
compact support in some fixed neighborhood of Ω.

§15.18. Extension of Sobolev inequalities to Extension domains. Many proper-
ties of W 1,p(Rn) extend to extension domains.
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§15.19. Poincaré inequality for W 1,p
0 (Ω).

Theorem 15.68. Let n ≥ 2 and Ω ⊂ Rn a bounded open set. For every p ∈ [1,+∞)
there is C ∈ R such that,

(176) ∀u ∈W 1,p
0 (Ω), ‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω).

Remark 15.69. The inequality in (176) can also be written as

∀u ∈W 1,p
0 (Ω),

∫
Ω

|u|p dx ≤ Cp
∫

Ω

|∇u|p dx.

Lemma 15.70. Let 1 ≤ a < b <∞. If Ω ⊂ Rn is a measurable set, then

(177) ∀u ∈ L1
loc(Ω), ‖u‖La(Ω) ≤ |Ω|

b−a
ba ‖u‖Lb(Ω),

where |Ω| = L n(Ω) is the volume of Ω.

Proof. Since b/a > 1, we can apply the Hölder inequality:

∫
Ω

|u|a dx
(Hölder)
≤

(∫
Ω

|u|a ba dx

) a
b

·

∫
Ω

1

b
a
b
a
−1


b
a
−1

b
a

=

(∫
Ω

|u|b dx

) a
b

· |Ω|
b−a
b .

�

Proof of Theorem 15.68. We shall prove (176) assuming u ∈ C1
c (Ω), to obtain the general

statement by approximation in W 1,p
0 (Ω).

Fix p ∈ [1,+∞). Recall that, if q ∈ [1, n), then q∗ = nq
n−q . Since limq→n− q

∗ = +∞,
there is some q ∈ [1, n) such that q∗ > p. Let u ∈ C1

c (Ω) Therefore, using Theorem 15.22,

‖u‖Lp(Ω)

(177)
≤ |Ω|

q∗−p
q∗p ‖u‖Lq∗ (Ω)

(147)
≤ |Ω|

q∗−p
q∗p ‖∇u‖Lq(Ω).

If p < n, then we can take q = p already (because p∗ > p), and (176) is proven with

C = |Ω|
p∗−p
p∗p = |Ω| 1n . If p ≥ n, then, for each appropriate q ∈ (1, n) we have q < p and

thus

‖∇u‖Lq(Ω)

(177)
≤ |Ω|

p−q
pq ‖∇u‖Lq(Ω).

This implies (176) with C = |Ω|
q∗−p
q∗p + p−q

pq . �

§15.20. Extra that might be added in the future.
• Poincaré inequality for extension domains
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Part 4. Application of Sobolev spaces theory to PDE

16. Elliptic PDEs

§16.1. Setting. Let n ≥ 2 and Ω ⊂ Rn open. We are interested in functions u : Ω → C
such that

(178) Lu(x) = div(A(x)∇u(x)) + b(x) · ∇u(x) + c(x)u(x)
!
= f(x),

where A(x) ∈ Cn×n is a n × n-complex matrix, b(x) ∈ Cn and c(x), f(x) ∈ C, for each
x ∈ Ω.

How do we interpret the formula (178)? We may use distributional calculus: in such a
case, we need to make sense of the products A∇u =

∑
jk Ajk∂ju, b · ∇u =

∑
j bj∂ju, and

cu. If the coefficients A, b and c are smooth, then we can consider Lu = f for u, f ∈ D ′(Ω);
see §13.15. Another possibility is that we consider u ∈ W 1,1

loc (Ω): in such a case, all
derivatives of u are L1

loc functions and thus, if the coefficients A, b and c are bounded in
L∞, then the products are still of class L1

loc and thus div(A∇u) =
∑
jk ∂j(Ajk∂ku) ∈ D ′.

Definition 16.1. The standard conditions on L are:
(1) A ∈ L∞(Ω;Cn×n), such that A(x) is symmetric for every x ∈ Ω and there are

0 < λ ≤ Λ <∞ with

(179) ∀x ∈ Ω, ∀ξ ∈ Rn λ|ξ|2 ≤ 〈ξ, A(x)ξ〉 =

n∑
i,j=1

Aij(x)ξiξj ≤ Λ|ξ|2.

(2) b ∈ L∞(Ω;Cn), c ∈ L∞(Ω;C).

Condition (179) is called ellipticity. So, L as in (178) is elliptic if A satisfy (179).
Notice that, under these conditions, the formula for Lu(x) written in (178) is not well

founded. Indeed, even taking distributional derivatives, if A is only in L∞, then the
product A(x) · ∇u(x) is not a well defined distribution. However, we have written L in
divergence form so that we can say the following: If u ∈W 1,1

loc (Ω), then we define

(180)

Lu = f in Ω,

⇔

∀φ ∈ C∞c (Ω)

∫
Ω

(
〈A∇u,∇φ〉+ b · ∇uφ+ cuφ

)
dx =

∫
Ω

fφdx,

⇔

∀φ ∈ C∞c (Ω)

∫
Ω

(∑
jk

Ajk ∂ju ∂kφ+ (
∑
j

bj ∂ju+ c u)φ

)
dx =

∫
Ω

fφdx.

Exercise 16.2. Let p ∈ [1,∞) and set p′ = p
p−1

the Hölder conjugate of p. Show that, if
u ∈W 1,p(Ω) satisfies Lu = f as in (180) with f ∈ Lp(Ω), then

∀φ ∈W 1,p′

loc (Ω)

∫
Ω

(
〈A∇u,∇φ〉+ b · ∇uφ+ cuφ

)
dx =

∫
Ω

fφdx.

♦

Exercise 16.3 (??). If u ∈ W 1,1
loc (Ω) and A, b, c are bounded and A elliptic, and Lu =

f ∈ L1
loc(Ω), then div(A∇u) ∈ L1

loc(Ω). Show that u ∈W 2,1
loc (Ω). ♦

§16.2. The Sobolev space Hm. Let n ∈ N and Ω ⊂ Rn open. If m ∈ N, the Sobolev
space Hm(Ω) is nothing else than the Sobolev space with integral exponent 2, that is,

Hm(Ω) = Wm,2(Ω), Hm
loc(Ω) = Wm,2

loc (Ω), Hm
0 (Ω) = Wm,2

0 (Ω).

These spaces are in fact Hilbert spaces, when endowed with a correct norm. We will focus
on m = 1 (and m = 0, which is L2).

For u, v ∈ H1(Ω), we define

(181)

〈u, v〉H1(Ω) := 〈〈u, v〉〉

:=

∫
Ω

(〈∇u,∇v̄〉+ u · v̄) dx

= 〈∇u,∇v〉L2(Ω) + 〈u, v〉L2(Ω).
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Proposition 16.4. Let n ≥ 1 and Ω ⊂ Rn open. Then the bilinear map 〈〈·, ·〉〉 defined
in (181) makes H1(Ω) into a Hilbert space, with norm

‖u‖H1(Ω) =
√
〈u, u〉H1(Ω), ∀u ∈ H1(Ω),

which is biLipschitz equivalent to the Sobolev norm ‖ · ‖W1,2(Ω).

Proof. For every x ∈ Ω, and every u, v ∈ H1(Ω), we have |〈∇u(x),∇v̄(x)〉| ≤ |∇u(x)| ·
|∇v̄(x)|. Notice that, if u ∈ H1(Ω), then

‖u‖2H1(Ω) = 〈u, u〉H1(Ω)

= 〈∇u,∇u〉L2(Ω) + 〈u, u〉L2(Ω)

= ‖∇u‖2L2(Ω) + ‖u‖2L(Ω)2,

that is,

‖u‖H1(Ω) =
√
‖∇u‖2

L2(Ω)
+ ‖u‖2L(Ω)2

Since there are constants c, C ∈ (0,+∞) such that, for every a, b ∈ R2, c
√
a2 + b2 ≤

|a|+ |b| ≤ C
√
a2 + b2, then

c‖u‖H1(Ω) ≤ ‖u‖W1,2(Ω) = ‖∇u‖L2(Ω) + ‖u‖L2(Ω) ≤ C‖u‖H1(Ω).

See also Exercise 15.1. �

Remark 16.5. Proposition 16.4 has already a quite interesting consequence for PDE.
Let f ∈ L2(Ω) and define Tf : H1(Ω)→ C, Tfu = 〈f, u〉L2(Ω). The operator Tf is in fact a
bounded operator L2(Ω)→ C, therefore it is bounded also on H1(Ω); Explicitly, we have
|Tfu| ≤ ‖f‖L2(Ω)‖u‖L2(Ω) ≤ ‖f‖L2(Ω)‖u‖H1(Ω). Since H

1(Ω) is a Hilbert space, the Riesz
Representation Theorem implies that there exists a unique u ∈ H1(Ω) such that, for all
φ ∈ H1(Ω), Tfφ = 〈u, φ〉H1(Ω). In particular,

(182) ∀φ ∈ C∞c (Ω),

∫
Ω

fφ̄ dx =

∫
Ω

((∇u · ∇φ̄) + uφ̄) dx.

The property (182) has a distributional interpretation: since
∫

Ω
(∇u·∇φ̄) dx =

∑n
j=1 ∂ju[∂j φ̄] =

−4u[φ], then (182) is equivalent in D ′(Ω) to

(183) −4u+ u = f.

We have thus proven that, for every f ∈ L2(Ω), there exists a unique u ∈ H1(Ω) that is
a distributional solution to (183).

Exercise 16.6. Show that, if Ω ⊂ Rn is an open and bounded set (or with finite volume),
then, for every λ ∈ (−∞, 0], there exists a unique solution to{

−4u = λu,

u ∈ H1
0 (Ω).

Since such solution must be u = 0, you have shown that the half-line (−∞, 0] is not in the
spectrum of −4. ♦

§16.3. An alternative scalar product on H1
0 (Ω). If Ω is a bounded open subset of

Rn,8 the Poincaré inequality from Theorem 15.68, implies that

(184) 〈〈u, v〉〉 := 〈∇u,∇v〉L2(Ω), ∀u, v ∈ H1
0 (Ω),

is a Hilbert scalar product on H1
0 (Ω). Indeed,

1

2C
‖u‖L2(Ω) +

1

2
‖∇u‖L2(Ω)

(176)
≤ ‖∇u‖L2(Ω) =

√
〈〈u, u〉〉 ≤ ‖u‖H1(Ω),

which shows that the quasi-norm u 7→ ‖∇u‖L2(Ω) is a norm bi-Lipschitz equivalent to
u 7→ ‖u‖H1(Ω).

As we did in Remark 16.5, we can deduce an existence and uniqueness result for a
PDE. Indeed, if f ∈ L2(Ω), then the operator Tfφ := 〈f, φ〉L2(Ω) is bounded on H1

0 (Ω).

8Connected? only finite measure? TODO
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Therefore, by the Riesz Representation Theorem, there exists a unique u ∈ H1
0 (Ω) such

that

∀φ ∈ C∞c (Ω), 〈〈u, φ〉〉 = Tfφ.

Distributionally, this reads as

4u = f in Ω.

We have proven the following theorem:

Theorem 16.7. Let Ω ⊂ Rn be a bounded open set. For every f ∈ L2(Ω), the boundary
problem {

4u = f in Ω,

u = 0 on ∂Ω, i.e., u ∈ H1
0 (Ω),

has a unique solution u ∈ H1
0 (Ω).

§16.4. The dual of H1. The dual space of Hm is, by definition, the space

H−m(Ω) := (Hm(Ω))′, and H−m0 (Ω) := (Hm
0 (Ω))′.

Let us focus on m = 1. Being a Hilbert space, the dual of Hm is canonically isomorphic
to Hm itself. However, it is useful to keep the two spaces distinct. The main reason, in
my view, is that we want to see L2(Ω) as a subspace of the dual of H1(Ω). Indeed, if
f ∈ L2(Ω), then, as we have seen above, u 7→

∫
Ω
uf dx is an element of Hm(Ω)′ (or

Hm
0 (Ω)′). However, it is clear that L2(Ω) 6⊂ H1(Ω): in fact, H1(Ω) ↪→ L2(Ω).
For more discussions, see

https://math.stackexchange.com/questions/314113/dual-space-of-h1.

§16.5. Functional Analysis: Lax–Milgram Theorem. See also [15, Aufgabe V.6.18].
If X is a Banach space, we denote by X ′ its topological dual Banach space, and, for

ξ ∈ X ′ and x ∈ X, we write the pairing ξ[x] as X′〈ξ|x〉X .
The following theorem will replace the role of Riesz Theorem in the previous discus-

sion. It is here written for Banach spaces: notice that there are Banach spaces that are
isomorphic to their duals without being “hilbertable”; see https://math.stackexchange.
com/questions/65609/isometric-to-dual-implies-hilbertable.

Theorem 16.8 (Lax–Milgram Theorem). Let (X, ‖ · ‖X) be a Banach space and B :
X ×X → C a bilinear map.

(1) If B is bounded (i.e., continuous), that is, there is β ∈ R such that,

(185) ∀u, v ∈ X, |B[u, v]| ≤ β‖u‖X · ‖v‖X ,
then there is a bounded linear operator T : X → X ′ with ‖T‖ ≤ β and such that

(186) ∀u, v ∈ X, B[u, v] = X′〈Tu|v̄〉X .
(2) If B is bounded and coercive, that is, there exists δ > 0

(187) ∀u ∈ H, Re(B[u, u]) ≥ δ‖u‖2,
then the linear operator T : X → X ′ is invertible and ‖T−1‖ ≤ 1

δ
.

Proof. Suppose B is bounded. If u ∈ X, then v 7→ B[u, v] is a continuous (thanks
to (185)) linear functional X → C and thus there exists a unique Tu := w ∈ X ′ such
that B[u, v] = X′〈Tu|v̄〉X for all v ∈ X. It is easy to see that the so defined function
T : X → X ′ is linear. We will next prove several properties of this operator T .

We claim that T is bounded, and

‖T‖X→X′ ≤ β.
Indeed, if u ∈ X, then

‖Tu‖X′ = sup{|X′〈Tu|v〉X | : v ∈ X, ‖v‖X ≤ 1}
= sup{|B[u, v̄]| : v ∈ X, ‖v‖X ≤ 1}
(185)
≤ sup{β‖u‖X · ‖v‖X : v ∈ X, ‖v‖X ≤ 1}

https://math.stackexchange.com/questions/314113/dual-space-of-h1
https://math.stackexchange.com/questions/65609/isometric-to-dual-implies-hilbertable
https://math.stackexchange.com/questions/65609/isometric-to-dual-implies-hilbertable
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= β‖u‖X .
Therefore, we have proven the claim.

We claim that T is coercive, i.e.,

(188) ∀u ∈ X, ‖Tu‖X′ ≥ δ‖x‖X .
Indeed, if u ∈ X, then

δ‖x‖2
(187)
≤ Re(B[x, x̄]) ≤ |B[x, x̄]| = |X′〈Tu|v〉X | ≤ ‖Tx‖X′‖x‖X .

Hence, (188) follows.
We claim that im(T ) = T [X], the image of T , is closed in X ′. Indeed, if α ∈ X ′ and if

{uk}k∈N ⊂ X is a sequence such that limk→∞ Tuk = α ∈ X ′, then, using coercivity of T ,

we have ‖uj − uk‖X
(188)
≤ 1

δ
‖T [uj − uk]‖X′ , and thus {uk}k∈N is a Cauchy sequence in X

If limk→∞ uk = u, then, by the boundedness of T , we have α = Tu ∈ im(T ).
We claim that im(T ) = X ′. Since im(T ) is closed, we only need to show that, if

v ∈ X annihilates to im(T ), then v = 0 (thanks to Hahn–Banach Theorem). If v ∈ H
annihilates to im(T ), then 0 = X′〈Tu|v〉X for every u ∈ X. In particular, combining this

with coercivity, we obtain 0 = X′〈Tv|v〉X
(188)
≥ δ‖v‖2X . Therefore, v = 0.

Finally, since T is a continuous, injective and surjective linear operator, its inverse is
also continuous. �

§16.6. First Existence and Uniqueness result. We denote by Rn×n the space of all
n × n matrices. As such, if A ∈ Rn×n, then |A|∞ := sup{|Ax| : x ∈ Rn, |x| ≤ 1}. So, if
A ∈ L∞(Ω;Rn×n), then

‖A‖L∞(Ω) = sup{|A(x)|∞ : x ∈ Ω}.
The scalar product 〈·, ·〉 is in fact sequilinear and defined as

∀x, y ∈ Cn, 〈x, y〉 = x · ȳ =

n∑
j=1

xj ȳj .

Theorem 16.9. Let n ≥ 2 and Ω ⊂ Rn open and bounded. Let L be a second order linear
differential operator in divergence form, that is,

(189) Lu = −div(A∇u) + b · ∇u+ cu,

where

(190) A ∈ L∞(Ω;Rn×n), b ∈ L∞(Ω;Cn), and c ∈ L∞(Ω;C).

Then L is a bounded linear operator L : H1
0 (Ω)→ H−1

0 (Ω).
Suppose that there are 0 < θ ≤ Θ <∞ such that

(191) ∀x ∈ Ω, ∀ξ ∈ Cn, θ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Θ|ξ|2.
Then there is γ ≥ 0 (in fact, the one for which holds (196)) such that for all λ ∈ C with
Re(λ) ≥ γ, the operator L+λ : H1

0 (Ω)→ H−1
0 (Ω) is bounded and invertible. In particular,

for every f ∈ H−1
0 (Ω) there exists a unique weak solution to the boundary problem

(192)

{
Lu+ λu = f in Ω,

u ∈ H1
0 (Ω).

Moreover, denoting by ι : H1
0 (Ω) ↪→ L2(Ω) the standard embedding, the operator Kλ =

ι ◦ (L− λ)−1|L2(Ω) : L2(Ω)→ L2(Ω) is bounded, linear, and compact.

For proving Theorem 16.9, we will study the bilinear form EL : H1
0 (Ω)×H1

0 (Ω)→ C,

(193) EL[u, v] =

∫
Ω

(〈A∇u,∇v〉+ (∇u · b+ cu)v̄) dx.

This bilinear form EL is called the Dirichlet form of L.
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Lemma 16.10 (Energy Estimates 1). Let n ≥ 2 and Ω ⊂ Rn open. Let L be a second
order linear differential operator in divergence form as in (189). Assume that L has
bounded coefficients, that is, (190). Define EL : H1

0 (Ω)×H1
0 (Ω)→ C as in (193).

Then, there is α ≥ 0 such that, for all u, v ∈ H1
0 (Ω),

(194) ∀u, v ∈ H1
0 (Ω), |EL[u, v]| ≤ α‖u‖H1(Ω)‖v‖H1(Ω).

In particular, the linear operator L : H1
0 (Ω) → D ′ is a continuous linear operator L :

H1
0 (Ω)→ H−1

0 (Ω) with

(195) ∀u, v ∈ H1
0 (Ω), EL[u, v] =

H−1
0 (Ω)

〈Lu|v̄〉H1
0 (Ω).

Proof.

|EL[u, v]| ≤
∫

Ω

|〈A∇u,∇v〉+ 〈∇u, b〉v̄ + cuv̄| dx

≤
∫

Ω

|A∇u||∇v|+ |b||∇u||v|+ |cuv̄| dx

≤ ‖A‖L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖b‖L∞(Ω)‖∇u‖L2(Ω)‖v‖L2(Ω)

+ ‖c‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤ (‖A‖L∞(Ω) + ‖b‖L∞(Ω) + ‖c‖L∞(Ω))‖u‖H1(Ω)‖v‖H1(Ω).

So, we have (194) with α = (‖A‖L∞(Ω) + ‖b‖L∞(Ω) + ‖c‖L∞(Ω)).
By the Lax–Milgram Theorem 16.8, there is a continuous linear operator T : H1

0 (Ω)→
H−1

0 (Ω) that satisfies the role of L in (195). We claim that T = L. Indeed, if φ ∈ D(Ω),
then, for every u ∈ H1

0 (Ω) we have

Lu[φ] = D′(Ω)〈Lu|φ〉D(Ω)

= (−div(A∇u) + b · ∇u+ cu)[φ]

= −
n∑
j=1

∂j(A∇u)j [φ] +

∫
Ω

b · ∇uφ+ cuφ dx

=

n∑
j=1

(A∇u)j [∂jφ] +

∫
Ω

b · ∇uφ+ cuφ dx

=

∫
Ω

(

n∑
j=1

(A∇u)j [∂jφ] + b · ∇uφ+ cuφ) dx

=

∫
Ω

((A∇u) · ∇φ+ b · ∇uφ+ cuφ) dx

= 〈A∇u,∇φ̄〉L2(Ω) + 〈(b · ∇u+ cu), φ̄)〉L2(Ω)

= EL[u, φ̄]

= H1
0 (Ω)′〈Tu, φ〉H1

0 (Ω).

Since D(Ω) is dense in H1
0 (Ω), we obtain that Lu = Tu not just on D(Ω), but also on

H1
0 (Ω). �

Lemma 16.11 (Energy Estimates 2). Let n ≥ 2 and Ω ⊂ Rn open. Let L be a second
order linear differential operator in divergence form as in (189). Assume that L has
bounded coefficients, that is, (190), and that L is elliptic, that is, (191). Define EL :
H1

0 (Ω)×H1
0 (Ω)→ C as in (193).

Then, there are β > 0 and γ ≥ 0 such that, for all u, v ∈ H1
0 (Ω),

(196) β‖∇u‖2L2(Ω) ≤ Re(EL[u, u]) + γ‖u‖2L2(Ω).

Proof. We have

θ

∫
Ω

|∇u|2 dx
(191)
≤
∫

Ω

〈A∇u,∇u〉dx
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=

∣∣∣∣EL[u, u]−
∫

Ω

(
〈∇u, b〉ū+ c|u|2

)
dx

∣∣∣∣
≤ |EL[u, u]|+ ‖b‖L∞(Ω)‖∇u‖L2(Ω)‖u‖L2(Ω) + ‖c‖L∞(Ω)‖u‖2L2(Ω)

(197)
≤ |EL[u, u]|+ ‖b‖L∞(Ω)

(
ε
‖∇u‖2L2(Ω)

2
+

1

ε

‖u‖2L2(Ω)

2

)
+ ‖c‖L∞(Ω)‖u‖2L2(Ω)

[with ε =
θ

‖b‖L∞(Ω)

]

= |EL[u, u]|+ θ

2
‖∇u‖2L2(Ω) +

‖b‖2L∞(Ω)

2θ
‖u‖2L2(Ω) + ‖c‖L∞(Ω)‖u‖2L2(Ω)

= |EL[u, u]|+ θ

2
‖∇u‖2L2(Ω) +

(
‖b‖2L∞(Ω)

2θ
+ ‖c‖L∞(Ω)

)
‖u‖2L2(Ω).

So, we have (196) with β = θ
2
and γ =

‖b‖2L∞(Ω)

2θ
+ ‖c‖L∞(Ω). �

Remark 16.12. Notice that, if c is real-valued and c ≥ c0 for some c0 ∈ R, then one can

take γ =
‖b‖2L∞(Ω)

2θ
+ c0 in (196).

Lemma 16.13 (Cauchy inequality with ε). For every a, b ∈ R, and for every ε > 0,

(197) ab ≤ εa
2

2
+

1

ε

b2

2
.

Proof.

0 ≤
(√

εa− 1√
ε
b

)2

= εa2 +
1

ε
b2 − 2ab.

�

Proof of Theorem 16.9. The conditions (190) on the coefficients of L easily imply that L is
a continuous linear operator H1

0 (Ω)→ D ′(Ω). Define EL : H1
0 (Ω)×H1

0 (Ω)→ C as in (193).
By Lemma 16.10, using again (190), the bilinear map EL is bounded. By Theorem 16.8,
there is a continuous operator T : H1

0 (Ω)→ H−1
0 (Ω) such that (186) holds. However, see

that (186) is equivalent to say that T = L. Indeed, if u ∈ H1
0 (Ω) and φ ∈ D(Ω) ⊂ H1

0 (Ω),

Lu[φ] = EL[u, φ] =
H−1

0 (Ω)
〈Tu|φ〉H1

0 (Ω),

hence Lu = Tu as elements of D ′(Ω). Therefore, L is a bounded linear operator L :
H1

0 (Ω)→ H−1
0 (Ω).

Next, we also assume the ellipticity condition (191). Let α, β and γ as in Lemmata 16.10
and 16.11, and let λ ∈ C with

(198) Re(λ) ≥ γ.
Define Bλ : H1

0 (Ω)×H1
0 (Ω)→ C by

∀u, v ∈ H1
0 (Ω), Bλ[u, v] = EL[u, v] + λ〈u, v〉L2(Ω).

On H1
0 (Ω), we consider the Hilbert scalar product 〈〈·, ·〉〉 defined in (184), with norm

‖ · ‖H1
0 (Ω) =

√
〈〈·, ·〉〉.

From Lemmata 16.10 and 16.11, we obtain that Bλ is a bounded and coercive bilinear
map. Indeed, on the one hand, for every u, v ∈ H1

0 (Ω),

|Bλ[u, v]|
(194)
≤ α‖u‖H1(Ω)‖v‖H1(Ω) ≤ αC‖u‖H1

0 (Ω)‖v‖H1
0 (Ω),

where C is a constant of equivalence between the two norms on H1
0 (Ω). On the other

hand, for every u ∈ H1
0 (Ω),

Re(Bλ[u, u]) = Re(EL[u, u]) + Re(λ)‖u‖2L2(Ω)

(196)
≥ β‖∇u‖2L2(Ω) + (Re(λ)− γ)‖u‖2L2(Ω)
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(198)
≥ β‖∇u‖2L2(Ω) = β‖u‖H1

0 (Ω).

We apply Lax–Milgram Theorem 16.8: there exists a continuous, invertible linear operator
Tλ : H1

0 (Ω)→ H−1
0 (Ω) such that

∀u, v ∈ H1
0 (Ω) Bλ[u, v] =

H−1
0 (Ω)

〈Tλu|v〉H1
0 (Ω).

We claim that Tλ = T+λ. Here we mean that Tλu = Tu+λι(u), where ι : H1
0 (Ω) ↪→ L2(Ω)

is the standard embedding. Indeed, for all u, v ∈ H1
0 (Ω),

H−1
0 (Ω)

〈Tu+ λu|v〉H1
0 (Ω) =

H−1
0 (Ω)

〈Tu|v〉H1
0 (Ω) + λ

H−1
0 (Ω)

〈ι(u)|v〉H1
0 (Ω)

= EL[u, v] + λ〈u, v〉L2(Ω) = Bλ[u, v]

=
H−1

0 (Ω)
〈Tλu|v〉H1

0 (Ω).

It follows that, for every f ∈ H−1
0 (Ω), the preimage u = T−1

λ [f ] is the unique solution
to (192).

Finally, the operator K is the composition of a continuous linear operator (T − λ)−1

with a continuous linear compact operator ι : H1
0 (Ω) → L2(Ω). The compactness of ι

comes from Rellich–Kondrachov Theorem ??. �

§16.7. If you want kaos. Here I write something that may confuse the reader quite a
lot. Read it at your own risk.

The pairing 〈u, v〉L2(Ω) =
∫

Ω
uv̄ dx is continuous on H1(Ω), but it is NOT the Hilbert

scalar product of H1. For instance, the closure of H1(Ω) with respect to the norm
‖ · ‖L2(Ω) =

√
〈u, v〉L2(Ω), is L2(Ω). Continuity means that, if f ∈ L2(Ω), then u 7→

〈u, f〉L2(Ω) is an element of the dual of H1
0 (Ω).

Riesz Theorem implies that there is some vf ∈ H1(Ω) such that

∀u ∈ H1(Ω), 〈u, f〉L2(Ω)
!
= 〈∇u,∇vf 〉L2(Ω) + 〈u, vf 〉L2(Ω)

def
= 〈u, vf 〉H1(Ω).

We have seen that, if Ω is bounded, then 〈u, v〉H1
0 (Ω) =

∫
Ω
〈∇u,∇v〉dx is a Hilbert scalar

product on H1
0 (Ω). Again, Riesz Theorem implies that there exists wf ∈ H1

0 (Ω) such that

∀u ∈ H1
0 (Ω), 〈u, f〉L2(Ω)

!
= 〈∇u,∇wf 〉L2(Ω)

def
= 〈u,wf 〉H1

0 (Ω).

§16.8. Functional Analysis: Fredholm Alternative Theorem. Recall that, if X
and Y are Banach spaces (e.g., Hilbert spaces), a linear operator K : X → Y is compact
operator if K maps bounded sets to compact sets.

See also https://terrytao.wordpress.com/2011/04/10/a-proof-of-the-fredholm-alternative/

Theorem 16.14 (Fredholm Alternative). Let H be a Hilbert space with scalar product
〈·, ·〉 and norm ‖ · ‖ =

√
〈·, ·〉. Let K : H → H be a compact linear operator. For every

λ ∈ C,
(1) ker(K − λ) is finite dimensional;
(2) im(K − λ) is closed;
(3) im(K − λ) = ker(K∗ − λ̄)⊥;
(4) dim(ker(K − λ)) = dim(ker(K∗ − λ̄));
(5) ker(K − λ) = {0} if and only if im(K − λ) = H.

§16.9. Second Existence and Uniqueness result.

Theorem 16.15. Let n ≥ 2 and Ω ⊂ Rn open and bounded. Let L be an operator as in
Theorem 16.9 and define B : H1

0 (Ω)×H1
0 (Ω)→ C as in (??). Define N ,M⊂ H1

0 (Ω) as

N = {u ∈ H1
0 (Ω) : EL[u, v] = 0 ∀v ∈ H1

0 (Ω)},
M = {v ∈ H1

0 (Ω) : EL[u, v] = 0 ∀u ∈ H1
0 (Ω)}.

Then:
(1) Both N andM have finite dimension and dim(N ) = dim(M).

https://terrytao.wordpress.com/2011/04/10/a-proof-of-the-fredholm-alternative/
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(2) N is the linear space of solutions to

(199)

{
Lu = 0,

u ∈ H1
0 (Ω).

(3) for every f ∈ L2(Ω), the boundary value PDE

(200)

{
Lu = f,

u ∈ H1
0 (Ω)

has a solution if and only if

〈f, v〉L2(Ω) = 0 ∀v ∈M.

(4) The affine space of solutions to (200), if not empty, has the same dimension of
N . In fact, given a solution u1 to (200), then u1 + N is the space of solutions
to (200).

Proof. Let γ as in Theorem 16.9, i.e., as in Lemma 16.11. Define K = T−1
γ = (L+ γ)−1,

which is a compact bounded linear operator L2(Ω)→ L2(Ω), as shown in Theorem 16.9.
Notice that, for every u ∈ H1

0 (Ω) and f ∈ L2(Ω)

(201)

u solves (200)⇔ EL[u, v] = 〈f, v〉L2(Ω) ∀v ∈ H1
0 (Ω)

⇔ Bγ [u, v] = 〈f + γu, v〉L2(Ω) ∀v ∈ H1
0 (Ω)

⇔ Tγu = f + γu

⇔ u = T−1
γ (f + γu) = Kf + γKu

⇔ u− γKu = Kf.

So, considering the case f = 0, we obtain that u solves (199), if and only if u ∈ ker(Id−γK),
that is,

N = ker(Id− γK).

Since γK is a compact operator L2(Ω)→ L2(Ω), the Fredholm Alternative Theorem 16.14
implies that N = ker(Id− γK) is finite dimensional.

Moreover, for each f ∈ L2(Ω),

(200) has a solution
(201)⇔ Kf ∈ im(Id− γK)

Thm 16.14⇔ Kf ⊥ ker(Id− γK∗)
(∗)⇔ f ⊥ ker(Id− γK∗),

where the equivalence (∗) is justified as follows: if v ∈ ker(Id−γK∗), i.e., γK∗v = v, then
γ〈Kf, v〉L2(Ω) = γ〈f,K∗v〉L2(Ω) = 〈f, v〉L2(Ω), so, (∗) holds, even when γ = 0.

We claim that

(202) M = ker(Id− γK∗).
Notice that, similarly to what we have done in (201),

(203)

v ∈M⇔ EL[u, v] = 0 ∀u ∈ H1
0 (Ω)

⇔ Bγ [u, v]
def
= B[u, v] + γ〈u, v̄〉L2(Ω) = 〈u, γv̄〉L2(Ω) ∀u ∈ H1

0 (Ω)

⇔
H−1

0 (Ω)
〈Tγu|v̄〉H1

0 (Ω) = 〈u, γv̄〉L2(Ω) ∀u ∈ H1
0 (Ω)

⇔ H1
0 (Ω)〈u|T>γ v̄〉H−1

0 (Ω)
= 〈u, γv̄〉L2(Ω) ∀u ∈ H1

0 (Ω)

⇔ T>γ v̄ = γv̄

⇔ v̄ − γ(T>γ )−1v̄ = 0

⇔ v − γ(T>γ )−1v̄ = 0

Here we have used the notation (·)> to denote the dual map: if T : X → Y is an operator
between Banach spaces, then T> : Y ′ → X ′ is the dual map defined by

(204) Y ′〈ζ, Tx〉Y = X′〈T>ζ|x〉X , ∀x ∈ X, ζ ∈ Y ′.
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To complete the proof of our claim (202), we need to show that

(205) ∀w ∈ L2(Ω), (T>γ )−1w̄ = K∗w.

First, notice that (T>γ )−1 = (T−1
γ )>, by an easy argument using directly (204):

∀x ∈ X, ∀ξ ∈ X ′, 〈ξ|x〉 = 〈ξ|T−1Tx〉 = 〈T>(T−1)>ξ|x〉 ⇒ T>(T−1)> = IdX′ .

So, (205) reduces to showing K>w̄ = K∗w for all w ∈ L2(Ω). More precisely, if K̃ = T−1
γ :

H−1
0 (Ω)→ H1

0 (Ω) (which is the operator from which K descends), then K̃> : H−1
0 (Ω)→

H1
0 (Ω) and

(206) ∀a, b ∈ H−1
0 (Ω), H1

0 (Ω)〈K̃a|b〉H−1
0 (Ω)

=
H−1

0 (Ω)
〈a|K̃>b〉H1

0 (Ω)

If a, b ∈ L2(Ω) ⊂ H−1
0 (Ω), then (206) says

〈a,K∗b〉L2(Ω) = 〈Ka, b〉L2(Ω)

= 〈K̃a, b〉L2(Ω)

=

∫
Ω

K̃a(x)b̄(x) dx

= H1
0 (Ω)〈K̃a|b̄〉H−1

0 (Ω)

=
H−1

0 (Ω)
〈a|K̃>b̄〉H1

0 (Ω)

=

∫
Ω

a(x)K̃>b̄(x) dx

= 〈a, K̃>b̄〉L2(Ω).

We can now complete the sequence of equivalences (203) with

v ∈M (203)⇔ v − γ(T>γ )−1v̄ = 0

⇔ v − γK∗v = 0.

We have thus proven our claim (202).
With Theorem 16.14 and claim (202), we have proven all the statements of Theo-

rem 16.15. �

Exercise 16.16. If u ∈ N means Lu = 0, what does v ∈M mean? ♦

§16.10. Regularity. We assume that L has bounded coefficients, i.e., (191), and that L
is elliptic, i.e., (190).

Lemma 16.17 (Caccioppoli Inequality9). Let n ≥ 2 and Ω ⊂ Rn open. Then there exists
C ∈ R such that the following holds.

If u ∈ H1(Ω) is such that Lu = f in Ω for some f ∈ L2(Ω), i.e.,

∀v ∈ H1
0 (Ω), EL(u, v) = 〈u, f〉L2(Ω),

then

(207) ‖∇u‖2L2(Ω) ≤ C(‖u‖2L2(Ω) + ‖f‖2L2(Ω)).

Proof. Let Ω′ b Ω and ζ ∈ C∞(Ω; [0, 1]) be such that

Ω′ ⊂ int{ζ = 1} ⊂ spt(ζ) b Ω.

θ‖∇u‖2L2(Ω′) = θ〈∇u,∇u〉L2(Ω′)

(190)
≤ 〈A∇u,∇u〉L2(Ω′)

≤ 〈A∇u,∇(ζu)〉L2(Ω)

≤ EL(u, ζu)− 〈b · ∇u+ cu, ζu〉L2(Ω)

= 〈f − b · ∇u− cu, ζu〉L2(Ω)

9https://en.wikipedia.org/wiki/Renato_Caccioppoli

https://en.wikipedia.org/wiki/Renato_Caccioppoli
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(Hölder)
≤ (‖f‖L2(Ω) + ‖b‖L∞(Ω)‖∇u‖L2(Ω) + ‖c‖L∞(Ω)‖u‖L2(Ω))‖ζu‖L2(Ω)

(197)
≤
‖f‖2L2(Ω)

2
+
‖ζu‖2L2(Ω)

2

+
θ

2
‖∇u‖2L2(Ω) +

‖b‖L∞(Ω)

2θ
‖ζu‖2L2(Ω)

+ ‖c‖L∞(Ω)‖u‖L2(Ω)‖ζu‖L2(Ω)

[by 0 ≤ ζ ≤ 1] ≤
‖f‖2L2(Ω)

2
+

(
1

2
+
‖b‖L∞(Ω)

2θ
+ ‖c‖L∞(Ω)

)
‖u‖2L2(Ω) +

θ

2
‖∇u‖2L2(Ω).

Therefore

(208) 2‖∇u‖2L2(Ω′) − ‖∇u‖2L2(Ω) ≤
2

θ

‖f‖2L2(Ω)

2
+
(
1 + ‖b‖L∞(Ω) + 2θ‖c‖L∞(Ω)

)
‖u‖2L2(Ω).

Since the right-hand side of estimate (208) does not depend on Ω′, if we take the supremum
over all Ω′ b Ω, we obtain

‖∇u‖2L2(Ω) ≤
2

θ

‖f‖2L2(Ω)

2
+
(
1 + ‖b‖L∞(Ω) + 2θ‖c‖L∞(Ω)

)
‖u‖2L2(Ω).

We have thus obtained (207). �

Lemma 16.18. Let n ≥ 2 and Ω ⊂ Rn open. Suppose that u ∈ H1(Ω) is such that
Lu = f for some f ∈ L2(Ω), where L has b = 0 and c = 0. Equivalently, u ∈ H1(Ω) and
f ∈ L2(Ω) are such that

(209) ∀v ∈ H1
0 (Ω), 〈A∇u,∇v〉L2(Ω) = 〈f, v〉L2(Ω),

where A ∈ L∞(Ω;Cn×n) satisfies the ellipticity condition (190).
For every Ω′′ b Ω there exist constants C and ε depending on Ω′′, ‖A‖L∞(Ω), ‖DA‖L∞(Ω),

and θ, such that, for every h with 0 < |h| < ε, and for every j ∈ {1, . . . , n},
(210) ‖∆h

j∇u‖2L2(Ω′′) ≤ C(‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) + ‖f‖2L2(Ω)).

Proof. Fix j ∈ {1, . . . , n} and h 6= 0. Let Ω′ b Ω′ b Ω and ζ ∈ C∞(Ω; [0, 1]) be such that

Ω′′ ⊂ int{ζ = 1} ⊂ spt(ζ) b Ω′ b Ω.

Then there exists ε > 0 such that, for every h with 0 < |h| < ε,

v := −∆−hj (ζ2∆h
j u) ∈ H1

0 (Ω).

With the aim of applying (209) with this test function, we make the following estimates.
We see that

〈A∇u,∇v〉L2(Ω) = 〈A∇u,∇(−∆−hj (ζ2∆h
j u))〉L2(Ω)

(154)
= 〈∆h

j (A∇u),∇(ζ2∆h
j u)〉L2(Ω)

(153)
= 〈(∆h

jA)∇u+A(h)∆h
j∇u,∆h

j u2ζ∇ζ + ζ2∇(∆h
j u)〉L2(Ω)

= F1 + F2,

where A(h)(x) = A(x+ hej) and

F1 = 〈A(h)∆h
j∇u, ζ2∇(∆h

j u)〉L2(Ω)

= 〈A(h)ζ∆h
j∇u, ζ∆h

j∇u〉L2(Ω)

(190)
≥ θ‖ζ∆h

j∇u‖L2(Ω)

≥ θ‖∆h
j∇u‖L2(Ω′′);

F2 = 〈(∆h
jA)∇u,∆h

j u2ζ∇ζ〉L2(Ω)

+ 〈(∆h
jA)∇u, ζ2∇(∆h

j u)〉L2(Ω)

+ 〈A(h)∆h
j∇u,∆h

j u2ζ∇ζ〉L2(Ω)

≤ 2‖∆h
jA‖L∞(Ω′)‖∇u‖L2(Ω′)‖∆h

j u‖L2(Ω′)‖∇ζ‖L∞(Ω′)
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+ ‖∆h
jA‖L∞(Ω′)‖∇u‖L2(Ω′)‖ζ∆h

j∇u‖L2(Ω′)

+ 2‖A‖L∞(Ω′)‖ζ∆h
j∇u‖L2(Ω′)‖∆h

j u‖L2(Ω′)‖∇ζ‖L∞(Ω′)

≤ 2‖DA‖L∞(Ω)‖∇u‖2L2(Ω)‖∇ζ‖L∞(Ω)

+ ‖DA‖L∞(Ω)‖∇u‖L2(Ω)‖ζ∆h
j∇u‖L2(Ω)

+ 2‖A‖L∞(Ω)‖ζ∆h
j∇u‖L2(Ω)‖∇u‖L2(Ω)‖∇ζ‖L∞(Ω)

(197)
≤ 2‖DA‖L∞(Ω)‖∇ζ‖L∞(Ω)‖∇u‖2L2(Ω)

+ 4‖∇ζ‖2L∞(Ω)

‖A‖2L∞(Ω) + ‖DA‖2L∞(Ω)

θ
‖∇u‖2L2(Ω)

+
θ

2
‖ζ∆h

j∇u‖2L2(Ω).

Since

〈A∇u,∇v〉L2(Ω) = 〈u, f〉L2(Ω) ≤ ‖u‖L2(Ω)‖f‖L2(Ω)

(197)
≤
‖u‖2L2(Ω)

2
+
‖f‖2L2(Ω)

2
,

we obtain

θ

2
‖ζ∆h

j∇u‖2L2(Ω) ≤
‖u‖2L2(Ω)

2
+
‖f‖2L2(Ω)

2

+ 2‖DA‖L∞(Ω)‖∇ζ‖L∞(Ω)‖∇u‖2L2(Ω)

+ 4‖∇ζ‖2L∞(Ω)

‖A‖2L∞(Ω) + ‖DA‖2L∞(Ω)

θ
‖∇u‖2L2(Ω).

We conclude that there is a constant C ∈ R depending on ‖A‖L∞(Ω), ‖DA‖L∞(Ω),
‖∇ζ‖L∞(Ω) and θ such that

‖ζ∆h
j∇u‖2L2(Ω) ≤ C(‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) + ‖f‖2L2(Ω)).

Since ζ = 1 on Ω′′, then we get (210). �

Theorem 16.19 (Regularity of solutions to Elliptic PDE). Let n ≥ 2 and Ω ⊂ Rn open.
Let L be a differential operator as in (191), with bounded coefficients (190), and satis-

fying the ellipticity condition (189). Moreover, we assume that

‖DA‖L∞(Ω) <∞,
that is, that A is Lipschitz.

Then, for every Ω′ b Ω there exists a constant C such that

(211) ∀u ∈ H1(Ω), ‖D2u‖L2(Ω′) ≤ C(‖u‖L2(Ω) + ‖Lu‖L2(Ω)).

In particular, if u ∈ H1(Ω) is such that Lu ∈ L2(Ω), then u ∈ H2
loc(Ω).

Proof. Let Ω′ b Ω and u ∈ H1(Ω) with f = Lu ∈ L2(Ω) (if ‖Lu‖L2(Ω) = ∞, then (214)
is trivial. Define M as the differential operator

∀w ∈ H1(Ω), Mw = −div(A∇w) = Lw − (b · ∇w + cw).

Notice that, if w ∈ H1(Ω), then b · ∇w + cw ∈ L2(Ω). So,

Mu = f̃ := f − (b · ∇u+ cu) ∈ L2(Ω).

Notice that

(212) ‖f̃‖L2(Ω) ≤ ‖b‖L∞(Ω)‖∇u‖L2(Ω) + ‖c‖L∞(Ω)‖u‖L2(Ω).

Applying first Lemma 16.18, we obtain a constant C (independent of u) such that

lim sup
h→0

‖∆h
j∇u‖L2(Ω′′) ≤ C(‖u‖L2(Ω) + ‖∇u‖L2(Ω) + ‖f̃‖L2(Ω))

The estimate (212) and the Caccioppoli Inequality of Lemma 16.17, then implies that
there exists a constant C (independent of u) such that

lim sup
h→0

‖∆h
j∇u‖L2(Ω′′) ≤ C(‖u‖L2(Ω) + ‖f‖L2(Ω)).
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By Theorem 15.47 (using also the quantitative version given by Proposition 15.43), we
obtain (214). �

Exercise 16.20. Re-write Theorem 16.19, together with Lemmata 16.17 and 16.18, and
their proofs, for L = 4 on Rn. ♦

Corollary 16.21 (Regularity of solutions to Elliptic PDE). Let n ≥ 2 and Ω ⊂ Rn open.
Let L be a differential operator as in (191), with bounded coefficients (190), and sat-

isfying the ellipticity condition (189). Moreover, we assume that, for some m ∈ N, we
have

(213) A ∈Wm+1,∞(Ω;Cn×n), b ∈Wm,∞(Ω;Cn), c ∈Wm,∞(Ω;C).

Then, for every Ω′ b Ω there exists a constant C such that

(214) ∀u ∈ H1(Ω), ‖u‖Hm+2(Ω′) ≤ C(‖u‖L2(Ω) + ‖Lu‖Hm(Ω)).

In particular, if u ∈ H1(Ω) is such that Lu ∈ Hm(Ω), then u ∈ Hm+2
loc (Ω).

Proof. We prove the statement by induction over m. Let ` ∈ N. If ` = 0, then we just
apply Theorem 16.19. Suppose ` > 0 and suppose that the statement above holds for
m < `: we will prove it for m = `. Under the hypothesis above on L, we have that for
every Ω′ b Ω there exists a constant C such that

(215) ∀u ∈ H1(Ω), ‖u‖H`+1(Ω′) ≤ C(‖u‖L2(Ω) + ‖Lu‖H`−1(Ω)).

For each j ∈ {1, . . . , n}, we have

(216)

L∂ju = − div(A∇∂ju) + b · ∇∂ju+ c∂ju

= ∂j(−div(A∇u) + b · ∇u+ cu)− (− div(∂jA∇u) + ∂jb · ∇u+ ∂jcu)

= ∂jLu− Lju.
Straightforward estimates give, for every m ∈ N for which (213) holds, we have C′m <∞
such that
(217)
‖Lju‖Hm(Ω) ≤ ‖ div(∂jA∇u)‖Hm(Ω) + ‖∂jb · ∇u‖Hm(Ω) + ‖∂jcu‖Hm(Ω)

≤
∑
|α|≤m

‖Dα(div(∂jA∇u))‖L2(Ω) + ‖Dα∂jb · ∇u‖L2(Ω) + ‖Dα∂jcu‖L2(Ω)

≤ Cm(‖A‖Wm+2,∞(Ω) + ‖b‖Wm+1,∞(Ω) + ‖c‖Wm+1,∞(Ω))‖u‖Hm+2(Ω)

(213)
≤ C′m‖u‖Hm+2(Ω).

So

‖u‖H`+2(Ω′) ≤ ‖u‖L2(Ω) +

n∑
j=1

‖∂ju‖H`+1(Ω′)

(215)
≤ ‖u‖L2(Ω) + C

n∑
j=1

(‖∂ju‖L2(Ω) + ‖L∂ju‖H`−1(Ω′))

(216)
≤ ‖u‖L2(Ω) + C

n∑
j=1

(‖∂ju‖L2(Ω) + ‖∂jLu‖H`−1(Ω′) + ‖Lju‖H`−1(Ω′))

(217)
≤ C′

(
‖u‖H1(Ω) + ‖Lu‖H`(Ω) + ‖u‖H`+1(Ω)

)
(215)
≤ C′′

(
‖Lu‖H`(Ω) + ‖u‖L2(Ω) + ‖Lu‖H`−1(Ω)

)
≤ C′′′

(
‖Lu‖H`(Ω) + ‖u‖L2(Ω)

)
.

We eventually have (214) for m = `. �
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17. Exercises

§17.1. Eigenvalues of laplacian on interval. We want to study, for λ ∈ C and ` > 0,{
−4u+ λu = 0 in (0, `),

u(0) = u(`) = 0.

In other words,

(218)

{
u′′ = λu in (0, `),

u ∈ H1((0, `)).

Lemma 17.1. Let u be a solution to (218). Then u ∈ C∞((0, `)).

Proof. This is an application of Corollary 16.21. �

Be aware that the regularity stated in Lemma 17.1 is in the open interval (0, `) and
not on the whole [0, `]. We will procede as follows:

(1) the assumption u ∈ H1
0 ((0, `)) alone gives us that u is continuous on [0, `] and

that u(0) = u(`); see the following two Lemmata 17.3 and 17.4.
(2) Then, we will extend u to R in such a way that the extension ũ = E(u) is a

bounded function on R that solves 4ũ = λũ on R; see Lemma 17.5 and Corol-
lary 17.6.

(3) We will find all solutions of 4v = λv for v ∈ S ′(R) using the Fourier transform;
see Proposition 17.7.

(4) Among the solutions v on R, we look for those v that are extensions of functions
in H1

0 ((0, `)); see Proposition 17.9. In this way, we will find all solutions to (218).

Exercise 17.2. Try to guess solutions to (218). Try also to show they are the only one.
♦

§17.1.1. Fundamental properties of u.

Lemma 17.3. If u ∈ W 1,1((0, `)), then, up to changing u on a set of measure zero,
u ∈ C([0, `]) and

∀x ∈ [0, `], u(x) = u(0) +

∫ x

0

u′(y) dy.

Proof. Define v : (0, `)→ C by

v(x) =

∫ x

`/2

u′(y) dy.

We claim that

(219) v′ = u′.

If φ ∈ C∞c ((0, `)), then∫ `

0

v(x)φ′(x) dx =

∫ `

0

∫ x

`/2

u′(y)φ′(x) dy dx

= −
∫ `/2

0

∫ y

0

u′(y)φ′(x) dxdy +

∫ `

`/2

∫ `

y

u′(y)φ′(x) dxdy

= −
∫ `

0

u′(y)φ(y) dy

=

∫ `

0

u(y)φ′(y) dy.

This shows (219).
Therefore, (u− v)′ = 0 and thus, by the Constancy Theorem 13.62, there exists c ∈ C

such that, for almost every x ∈ (0, `), u(x) = c+ v(x). We conclude that, up to changing
u on a set of measure zero,

u(x) = u(`/2) +

∫ x

`/2

u′(y) dy.
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By the continuity of the integral, not only u is continuous, but also limx→0 u(x) exists and
it is equal to u(`/2)−

∫ `/2
0

u′(y) dy, and similarly for limx→` u(x). �

Lemma 17.4. Let v ∈ H1((0, `)) = W 1,2((0, `)). Then v ∈ W 1,1((0, `)) ∩ C([0, `]).
Moreover, if v ∈ H1

0 ((0, `)), then v(0) = v(`) = 0.

Proof. Since L2((0, `)) ⊂ L1((0, `)), then v ∈ W 1,1((0, `)). Lemma 17.3 implies that, up
to changing v on a set of measure zero, v ∈ C([0, `]).

Suppose v ∈ H1
0 ((0, `)). By definition of H1

0 ((0, `)), there exists a sequence {vj}j∈N ⊂
C∞c ((0, `)) such that vj → v in H1((0, `)), that is, limj→∞ ‖v − vj‖L2((0,`)) = 0 and
limj→∞ ‖v′−v′j‖L2((0,`)) = 0. Since the Hölder inequality implies ‖f‖L1((0,`)) ≤

√
`‖f‖L2((0,`)),

we obtain limj→∞ ‖v − vj‖L1((0,`)) = 0 and limj→∞ ‖v′ − v′j‖L1((0,`)) = 0. We know then
that, up to passing to a subsequence, there exists a set I ⊂ (0, `) of full measure so that
limj→∞ vj(x) = v(x) for every x ∈ I.

We claim that in fact the convergence vj → v is pointwise on [0, `] (in fact, we prove
that it is uniform). Indeed, if x̄ ∈ I and x ∈ [0, `], then, for every j ∈ N,

|v(x)− vj(x)| =
∣∣∣∣v(x̄)− vj(x̄) +

∫ x

x̄

(v′(y)− v′j(y)) dy

∣∣∣∣
≤ |v(x̄)− vj(x̄)|+

∫ `

0

|v′(y)− v′j(y)| dy.

Therefore, limj→∞ |v(x)− vj(x)| = 0 for every x ∈ [0, `].
Since vj(0) = vj(`) = 0 for all j, then v(0) = v(`) = 0. �

§17.1.2. Extension of u to R.

Lemma 17.5. For v ∈ L1((0, `)), define E(v) ∈ L1
loc(R) as

E(v)(x) =
∑
k∈Z

(
u(x mod `Z)1̀ [2k,2k+1](x)− u(−x mod `Z)1̀ [2k+1,2k+2](x)

)
.

Then, distributionally, for every v ∈W 1,1((0, `)),

E(v′) = E(v)′.

Proof. From Lemma 17.3, we know that, up to modifying v on a set of measure zero,
v ∈ C([0, `]) and, for all x ∈ [0, `],

(220) v(x) = v(0) +

∫ x

0

v′(y) dy.

The identity (220) implies that, for every φ ∈ D(R),

(221)
∫ `

0

u(x)φ′(x) dx = u(`)φ(`)− u(0)φ(0)−
∫ `

0

u′(x)φ(x) dx.

Let φ ∈ D(R).

−
∫
R
E(v)′(x)φ(x) dx

def
=

∫
R
E(v)(x)φ′(x) dx

=
∑
k∈Z

∫ `

0

(
u(x)φ′(2k`+ x)− u(`− x)φ′((2k + 1)`+ x)

)
dx

(221)
=
∑
k∈Z

u(`)φ′(2k`+ `)− u(0)φ′(2k`)

− u(0)φ′((2k + 1)`+ `) + u(`)φ′((2k + 1)`)

−
∫ `

0

(
u′(x)φ(2k`+ x)− u′(`− x)φ((2k + 1)`+ x)

)
dx

def
= −

∫
R
E(v′)(x)φ(x) dx.

�
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Corollary 17.6. Let u be a solution to (218). Let ũ = E(u) be the extension of u as in
Lemma 17.5. Then

(222) 4ũ = λũ in R.

Proof. If u ∈ H1
0 ((0, `)), then u, u′ ∈W 1,1((0, `)) ∩ C([0, `]) by Lemma ??. Therefore, by

Lemma 17.5, we have the following identities of distributions on R:

λE(u) = E(λu) = E(u′′) = E(u′)′ = E(u)′′.

This is (222). �

§17.1.3. Solve v′′ = λv in R.

Proposition 17.7. Let λ ∈ C. A Schwartz distribution v ∈ S ′(R) \ {0} solves
(223) v′′ = λv

if and only if λ = 0 and v is affine, or λ ∈ (−∞, 0) and there are a, b ∈ C with

(224) v = a exp(i
√
−λx) + b exp(−i

√
−λx) = a exp(iµx) + b exp(−iµx),

wher µ > 0 and λ = −µ2.

Proof. (224)⇒ (223). This just a direct computation, see Exercise 17.8
(223)⇒ (224). Apply the Fourier transform to both sides of (223), to obtain

(2πiξ)2F (v)
(135)
= F (v′′)

(223)
= F (λv) = λF (v).

This means that, for every φ ∈ S (R),

(225) 0 = S ′〈(2πiξ)2F (v)− λF (v)|φ〉S = S ′〈F (v)|(−4π2ξ2 − λ)φ〉S .

It follows that F (v) is supported on {ξ ∈ R : 4π2ξ2 + λ = 0}. So, if λ /∈ (−∞, 0], then
spt(F (v)) = ∅ and thus v = 0. If λ = 0, then v′′ = 0 and we know that v must be affine;
see Exercise 10.1.

Suppose λ ∈ (−∞, 0), and let µ > 0 such that

λ = −µ2.

Thus, we have
√
− λ

4π2 = µ
2π

The above statement about the support of F (v) now reads

spt(F (v)) ⊂
{ µ

2π
,− µ

2π

}
.

By Proposition 13.37,

F (v) =

∞∑
α=0

(
aα∂

αδ µ
2π

+ bα∂
αδ− µ

2π

)
.

We use again (225) to obtain that, for every φ ∈ S ′(R),

0 = S ′〈F (v)|(−4π2ξ2 − λ)φ〉S

=

∞∑
α=0

(
aα∂

αδ µ
2π

[(−4π2ξ2 − λ)φ] + bα∂
αδ− µ

2π
[(−4π2ξ2 − λ)φ]

)
=

∞∑
α=0

α∑
β=0

(
α

β

)(
aαδ µ

2π
[∂β(4π2ξ2 + λ)∂α−βφ] + bαδ− µ

2π
[∂β(4π2ξ2 + λ)∂α−βφ]

)
(∗)
=

∞∑
α=1

α∑
β=1

(
α

β

)(
aαδ µ

2π
[∂β(4π2ξ2 + λ)∂α−βφ] + bαδ− µ

2π
[∂β(4π2ξ2 + λ)∂α−βφ]

)
= a18π2 µ

2π
φ(

µ

2π
)− b18π2 µ

2π
φ(− µ

2π
)

+

∞∑
α=2

(
aα(α8π2 µ

2π
∂α−1φ(

µ

2π
) + α(α− 1)8π2∂α−2φ(

µ

2π
))

+ bα(−α8π2 µ

2π
∂α−1φ(− µ

2π
) + α(α− 1)8π2∂α−2φ(− µ

2π
))

)
,
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where in (∗) we observed that, if β = 0, then the summand is zero. Since φ is an arbitrary
function in S (R), we obtain aα = bα = 0 for all α ≥ 1. Hence,

F (v) = a0δ µ
2π

+ b0δ− µ
2π
.

From Exercise 14.26, we obtain

v(x)
(136)
= a0 exp(2πi

µ

2π
x) + b0 exp(−2πi

µ

2π
x)

= a0 exp(iµx) + b0 exp(−iµx).

�

Exercise 17.8. Show (224)⇒ (223) in Proposition 17.7. ♦

Proposition 17.7 states that the spectrum of −∂2 = −4 on R is [0,+∞):

σ(−4) = [0,+∞).

§17.1.4. Select solutions that are extensions.

Proposition 17.9. A non-zero function u ∈ H1
0 ((0, `)) solves (218) if and only if the

following two hold
(1) there is k ∈ N \ {0} such that λ = −

(
π
`
k
)2, and

(2) there is a ∈ C \ {0} such that

u(x) = a

(
exp

(
i
kπ

`
x

)
− exp

(
−i kπ

`
x

))
= 2ia sin

(
kπ

`
x

)
.

Proof. If u solves (218), then its extension ũ = E(u) defined in Lemma 17.5 is of the form
given by Proposition 17.7, with the additional boundary conditions ũ(0) = ũ(`) = 0. If ũ
is affine, then ũ = 0. Therefore, if ũ 6= 0, then there are a, b ∈ C with (224), i.e.,

ũ(x) = a exp(iµx) + b exp(−iµx),

where µ > 0 and λ = −µ2.
The condition ũ(0) = 0 implies b = −a. The condition ũ(`) = 0, implies

0 = a exp(iµ`)− a exp(−iµ`) = a exp(iµ`)(1− exp(−2iµ`)).

Therefore, either a = v = 0, or 2µ` ∈ 2πZ, i.e., µ` ∈ πZ, i.e.,
√
−λ = µ ∈ π

`
N. �

§17.2. More about the extension operator E. Lemma 17.5 gives a linear operator
E : L1((0, `))→ L1

loc(R).
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Part 5. Extras

18. Comments

§18.1. Correct proof of Theorem 10.32.

Correct proof of Theorem 10.32. Let U ⊂ Rn be open and u ∈ C∞(U) a harmonic func-
tion. Fix x̂ ∈ U and set r̂ = 1

4
dist(x̂, ∂U). We claim that there exists ε ∈ (0, 1) such that,

if

r < εr̂,

then the Taylor series of u centered at x̂ converges on B(x̂, r) to u, that is, for every
x ∈ B(x̂, r),

u(x) = lim
N→∞

N∑
k=0

∑
|α|=k

Dαu(x̂)

α!
(x− x̂)α.

To this aim, define the reminder function

RN (x) = u(x)−
N−1∑
k=0

∑
|α|=k

Dαu(x̂)

α!
(x− x̂)α.

For every x ∈ B(x̂, r) there exists tx ∈ [0, 1] such that

RN (x) =
∑
|α|=N

Dαu(x̂+ t(x− x̂))

α!
(x− x̂)α.

Using Proposition 10.27, we make the following estimate: since x̂ + t(x − x̂) ∈ B(x̂, r) ⊂
B(x̂, r̂), then B(x̂+ t(x− x̂), r̂) ⊂ B(x̂, 2r̂) ⊂ U . Therefore,

|RN (x)| ≤
∑
|α|=N

|Dαu(x̂+ t(x− x̂))|
α!

|x− x̂|N

(42)
≤ (2n+1nN)N‖u‖L1(B(x̂+t(x−x̂),r̂))

ωnr̂n+N

∑
|α|=N

1

α!
|x− x̂|N

≤ (2n+1nN)N‖u‖L1(B(x̂,2r̂))

ωnr̂n+N
rN

∑
|α|=N

1

α!

(226)
=
‖u‖L1(B(x̂,r̂))

ωnr̂n
εN (2n+1nN)N

nN

N !

=
‖u‖L1(B(x̂,r̂))

ωnr̂n

√
2πN(N/e)N

N !

(ε2n+1n2N)N√
2πN(N/e)N

=
‖u‖L1(B(x̂,r̂))

ωnr̂n

√
2πN(N/e)N

N !

(ε2n+1n2e)N√
2πN

,

where we have used the Multinomial Theorem

(226) nN = (

n∑
j=1

1)N =
∑
|α|=N

N !

α!
.

Using Stirling’s formula

lim
N→∞

√
2πN(N/e)N

N !
= 1,

we conclude that, if ε ∈ (0, 1) is so that ε2n+1n2e < 1, then limN→∞ |RN (x)| = 0. �
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19. List of Notations

Ck(Ω) : Functions Ω→ C that are smooth up to order k
Ckc (Ω) : Functions in Ck(Ω) that have compact support contained in Ω

Ckb (Ω) : Bounded functions belonging to Ck(Ω)

Ck(Ω;W ),
Ckc (Ω;W )

: Functions Ω→W with the required regularity

〈a, b〉 : Hermitian product: see Section §1.2
a · b : Dot product: see Section §1.1
〈a|b〉 : Pairing: see Section §1.3
V ∗〈a|b〉V : Pairing: see Section §1.3
Df , Dαf ,
Dα
xf

: Derivatives: see Section 2

∇f : Gradient: see Section 2
∂xf , ∂αx f : Derivatives: see Section 2
‖u‖Lp ,
‖u‖Lp(X),
‖u‖Lp(µ)

: Lp spaces: see Section §3.1

4u : Laplace operator: see Section §10.1
|α| for α ∈ Nn : size of multi-index: see Section 2
spt(ρ) : support of ρ, that is, the closure of {x : ρ(x) 6= 0}
B(x, r) : open ball with center x and radius r, that is, {y : |y − x| < r}
B̄(x, r) : closed ball with center x and radius r, that is, {y : |y− x| ≤ r};

in metric spaces, B̄(x, r) and B(x, r) may be different
�u : wave operator � = ∂2

t −4; see Section §12.1
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