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INTRODUCTION TO PDE 5

Part 0. Preliminaries
In this first preliminary part, we will touch superficially several notions that we will
refer to along the lecture notes.
1. PAIRINGS, DOT AND SCALAR PRODUCTS, ETC...

There is a flourishing art of making products of stuff in mathematics and physics. But
notation lacks. So, here are my choices.

§1.1. Dot Product. If a,b € C", then
n
a-b= Zajb]’.
j=1

§1.2. Scalar or inner product. If a,b € C", then
(a,b) = Zajl;j =a-b.
j=1

More generally, if u is a measure and a,b € L?(u; C™) are complex-valued functions

(@5) = (@, = [ ala) - Be) due).

These are inner products, with the properties (A € C)
(a,b) = (b, a), (a, Ab) = Xa, b),
(a,a) € [0,+00), (Aa,b) = Aa,b).
§1.3. Pairing. If V is a vector space (over some field K, e.g., K = C) with algebraic dual
V* (that is, the space of all linear maps V' — K), then, for alla € V* and b€ V,
(alb) = ab] € K (which is the evaluation of a in b) .
Sometimes, we can make it more precise
v={a|b)yv = a[b].
In general, if b € V and a € Lin(V; W) for some linear space W,
(alby = a[b] € W.
With this in mind, it is clear that
(alt) = (bla).

For instance, v+ (alb)y = v (bla)v=.
Pairings have the following properties (A € K):

(alb) = (bla),
(Aalb) = Xalb),
(a|\b) = Aalb).

§1.4. Example in L?(p). To put everything together, we see that, if a,b € L*(u), define
B,B € L*(p)* as

Bigl= [b-odn,  voe L),

Bl¢] = (¢,b), Vo€ L*(n).
Then

w@=/w&m=@w=w@
and

(Bla) = (alb) = (bla).
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2. DERIVATIVES

Let n,m € N. We denote by eq,...,e, the standard basis of R".
Let © C R" be an open set and f : Q2 — C™ and x € 2. The derivative of f at z, if it
exists, is the R-linear map Df(z) : R®™ — C™ such that

o @) = @) - Dr@y =l _

s lly —all

The partial derivative of f are

of
aLEj

The gradient of f is (if it exists)

_ (9f of
Vf= (%%)

The gradient is mostly used for scalar functions, that is, when m = 1.
If @ € N" is a multiindex, we set |a| == 377, a; and we denote by 0%f or D*f the
partial derivative of f given by

ar O\ g\
0i=(a5) (o) 7

If a function f(z,y) depends on several variables, we write D, f or 0. f to denote the
derivatives of f in the directions of z.

The space of functions 2 — C" that are continuous, differentiable and with continuous
derivatives up to order k € N is denote by C*(Q;C™). If m = 1, then we just write
C* (). We write C*(€Q;C™) for the space of functions that are smooth of class C* on a
neighborhood of .

If the domain of a function u is described as a product of open sets X C R™ and
Y CR",sou: X xY — C, we may require different regularity in the two entries. So, we
say that u € C**(X x Y) for some a,b € N if, for every y € Y, u(-,y) € C*(X), and for
every ¢ € X, u(z,-) € C*(Y).

Notice that C**(X) (with comma in place of semicolumn) is usually reserved for func-
tions of class C* whose a-th order derivative is b-Holder. In this case, we would have
a€Nandb e [0,1].

cC™.

() = Df(@)le;] = Jim LEH1E) = T(@)

3. MEASURES

§3.1. L? spaces. Let (X, .#,p) be a measure space, that is, X is a set endowed with

a c-algebra .# C 2% and p : .4 — [0,400] is a measure. In fact, we will mostly have

X =Q C R" open subset of R", .# the Borel o-algebra and p the Lebesgue measure.
For u : X — C measurable and p € [1,+00), define

s = lfullzo e = ( [ e du(x)>1/p.

The space LP(X) or LP(u) is the Banach space of all equivalence classes of measurable
functions u : X — C with ||u||zr < oo, where two functions are identified if they are equal
p-almost everywhere.

Sometimes, when we write “u € LP(X)
equivalence class.

”  we mean that u is a specific function, not an

§3.2. Holder and Minkowski inequalities. Let (X,.#, 1) be a measure space. Let
u,v: X - Candu; : X - C, j €{1,...,k}, be measurable functions.

/ : 1 1 _
Vp7p S [15+OO)7 Wlth 5 + F - 15

Holde
(Folder) [ ule)o(@) due) < lull oo foll o -

V{pj};?:l C [1,+00), with 25:1 p%_ =1,

(General Holder)
Sy T2y wi (@) dp(e) < TT5 Mlugllces -
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(Minkowski) Vp € [1, 0] lu+v|lee < |lullLex) + l|v]lLe(x)-
§3.3. Approximation with continuous functions.

Theorem 3.1. Let Q C R™ open and p € [1,00). The space Cc(S2) of continuous functions
with compact support in Q is dense in LP ().

Proof. [8, Proposition (7.9)] O
§3.4. Dominated Convergence Theorem.

Theorem 3.2 (LDCT, Lebesgue Dominated Convergence Theorem [8, Theorem 2.24]).
Let (X, ) be a measure space, T a topological space with teT, and f : TxX - R
a function such that there ewists g € L'(u) with |f(t,z)| < g(x) for all (t,x) € T x X.
Suppose that, for p-a.e. x € X, the limit lim,_,; f(t,x) exists. Then

tim [ 7(t.0)dpte) = [ (tm f(0.2)) du).

t—t X
§3.5. Functions defined by integrals.

Theorem 3.3 (Integral with parameter). Let X C R™ be an open set and (Y, 1) a measure
space. Let K : X xY — C be a measurable function and set

F(z) = /Y K(z,y) du(y),

for allz € X such thaty — K(x,y) is p-integrable, i.e., such that [, |K(z,y)| du(y) < co.
(3.3.1) If

(1) JeL'Y) V(zy) eXxY  [K(zy) <gy)
then F is defined for all x € X and F € L*(X). In particular, ||F| e (x) <
HQHLl(Y)-

(3.3.2) If (1) holds, and if

2) ey  K(y)ec'(X),

then F € C°(X).
(3.3.3) If (1) and (2) hold, and if

(B) YyeY : K(y) € CY(X), and 3g1 € L' (Y)V(x,y) € XxY : |D.K(z,y)| < g91(y),
then F € C*(X) and, for every x € X,

(4) D, F(z) = /Y DK (. ) duly).

Proof. Proof of (3.3.1). The condition (1) implies directly that K (z,-) € L*(Y") and that,
for every x € X,

[ K < [ 1K ] < ol

Proof of (3.3.2). Let {z;}jen C X be a sequence converging to £ € X. Condition (1)
allows us to apply the Lebesgue Dominated Convergence Theorem 3.2,

Fleeo) = /Y K (200, ) dpi(y)

[by K(-,y) € C°(X)] = /Y lim K (x;,y) du(y)

J—0o0
[by LDCT and (1)] = lim [ K(zj,y)du(y) = lim F(z;).
j—oo Jy j—o0
This shows that F' € C°(X).
Proof of (3.3.3). Fix 2 € X and i € {1,...,m} and h > 0 such that B(Z,h) € X. For
h € (=h, h), we have

F(& + hei;-) —F(@) _ /Y K(z+ hei’z) — K@) qu(y).
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Notice that for every h € (—h, h) and every y € Y there exists h’ € (—h, h) such that

K(# + hei,y) — K(2,y) _ 0K .
h _awl(x—"_helay)

‘<‘8K
)

(5) h (& +Nei,y)| < g1(y)

Therefore, we can apply the Lebesgue Dominated Convergence Theorem 3.2, to obtain

Hence, by (3),
‘K(i"+ hei,y) — K(&,y)

i

K . _ [ . K@+ he,y) - K(i,y)
s (Z,y)dy = /Y lim b dp(y)
[by LDCT and (5)] = lim / K(@+heiy) = K@) g
h—0 [y h
~ fim F(& + he;) —F(m)
h—0 h
This shows that F is differentiable at every point, with identity (4). By (8.3.2), D, F is
continuous. O

Corollary 3.4. Let X C R™ be an open set and (Y, u) a measure space. Let K : X XY —
C be a measurable function and set

F(z) = / K(z,y)du(y),
Y
for all x € X such that y — K(xz,vy) is integrable.

Suppose that
YyeY : K(,y) e C®(X), and
Vo € N™ Jg € L'(Y) V(z,9) € X XY : |DYK(z,y)| < g1(y).

Then F € C*(X).

The following Proposition 3.5 is a direct consequence of Theorem 3.3 and the Holder
inequality.
Proposition 3.5. Let X C R™ and Y C R™ be open sets, k € N and p € [1,00]. Let
K : X xY — C be a measurable function such that:

(1) for every y € Y, the function x — K (z,y) belongs to C*(Y);
(2) for every E € X and o € N™ with |a| < k, there exists go,g € LP(Y') such that,
for every x € E and everyy €Y,

K
‘ oz~

For g € [1,00] with 1/p+1/g=1 and f € LYY, define Tk f as
Ticf(o) = | Klo)fw)d
Y

Then Tx f € C*(X) and, for every a € N™ with |a| < k,

glel
gae S = Talplac]

§3.6. Fundamental Theorem of Calculus of Variations.

(x,y)l < Go,5(Y).

Theorem 3.6 (Fundamental Theorem of Calculus of Variations). If u € Li.(R™) is such
that

Vo € C(U), /qﬁ-udx:O,
U
then u = 0 almost everywhere in R".

Exercise 3.7. Prove the Fundamental Theorem of Calculus of Variations 3.6. O
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4. DIVERGENCE THEOREM

Given an open set U C R", the divergence of a vector field v € C*(U;C") is
81}7
div(v Z Bx]
Theorem 4.1 (Divergence Theorem [14, Lemma 10.1]). Let U C R™ be an open set with

C*' boundary OU. We denote by v : OU — S™™ ! the outward normal. Let v € C*(U;C™)
be a vector field. Then

(6) /Udiv(v) dz = /aUv -vdS(z).

Recall that the integral in dS is the surface integral over OU. One can think of dS as
the Hausdorff measure of dimension n — 1.

Remark 4.2. You might have seen the divergence Theorem 4.1 for real vector fields. In
the case of a complex vector field, we have v = v1 + tv2 with v1,v2 € C’l(U; R™). Then

/Udiv(v)dm:/Udiv(vl)deri/Udiv(vg)dx

:/ale~udS(m)+i/8Uv2'VdS($)
:/BU(me)mdS(m).

Notice that v has necessarily real components and thus 7 = v. In other words, we could
also write v-v = v -7 = (v,v), as the hermitian product of complex vectors.

Remark 4.3. Formula (6) is usually paired with the following formula for the divergence:
if f € C*(U) and v € C*(U;C™), then

(7) div(fv) =Vf- v+ fdiv(v).
Indeed,

le(f’U) _ Z 8(f’U])

=1 al']'
8f 611]
_Z( ax])
=Vf- v+ fdiv(v).

It follows that
/(Vf-v—i—fdiv(v))dm: fv-vdS(z).
U

ouU

5. COAREA FORMULAS

§5.1. Intro to surface measures. If ¥ C R" is an m-dimensional immersed C'-
submanifold, we denote by S™ the m-dimensional surface measure on . We can describe
S™ as the Hausdorff m-dimensional measure, or, being the submanifold smooth, as an
integral of m-differential forms on ¥. We can also obtain several formulas for its explicit
use. However, we will use a list of properties of these measures, and we do not need further
details.

We need the symmetries of S™: it is translation invariant, rotation invariant and scales
properly under dilations. More precisely, if ¥ C R™ is an immersed submanifold and if
O € 0(n) is an orthogonal matrix, v € R™ and r > 0, then

P

(8) / o5t u(z)dS™ (z) =™ / u(r(Oz +v))dS™(z),  Yuec C°(R™).
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§5.2. Coarea formula.

Theorem 5.1 (Coarea Formula:[2, Theorem 2.93& Remark 2.94]). Let Q@ C R" be an

open set and F : Q — R* o C'-submersion, that is, a C'-smooth map with surjective

differential at each point. As a consequence, we have that F(Q2) is open in R* and that,

for every y € F(R), the set F~*(y) C Q is an immersed submanifold of dimension n — k.
Then, for every u € L'(Q) with compact support,

9 w(z)J(DF(z))dx = w(z)dS™ F(z)dy,

) [ r@awreyae= [ ] s

where

(10)  J(DF(z)) = \/det(DF(z) x DF(x)T) = det(B)2.

\/BG{ka minors of DF(x)}
Exercise 5.2. Compute J(DF) as in (10) when k = 1 and when &k =n — 1. O
§5.3. Consequences of the coarea formula: spherical integrals.

Proposition 5.3. If Q C R" is open, then

(11) / dz—/ /anmQ z)dS" Nx)dr  Vue C°(Q).

Proof. Consider the function F' : R"\ {0} = R, F(z) = |z|. Then J(DF(x)) = |VF(z)| =
1 for all z € R™ \ {0}. So, Coarea Formula (9) gives immediately the identity (11). O

§5.4. Consequences of the coarea formula: on the sphere. From Theorem 5.1, we
can deduce seemingly more general results. For instance, a coarea formula on the sphere:

Proposition 5.4. Let S"7! the unit sphere in R™ centered at 0. If f € C*(R™;R), then,
for every u € C°(S™™1),

uw(z)|Vf(z) — (Vf(z) z)z|dS™ ' (z dS" ?(z) dz.
[ @9t = (V@) )l //S“m{fz} 7)ds™ (@)

For example, if f(x) = xn, then, for every u € C°(S"™1)

(12) /Sn_lu(x)MdS” Y /_I/Sn . z} (x)dS™ % (x)dz.

Moreover, we have

(13) /S » u(z)dS™ ' ( / /S N z} (z)dS™*(x )ﬁdz,

and

(14) / w(z) dS™( / / w(z) dS™ 2 (2) ——— dz.
8B(0,r) —r JoB(0,r)N{w3=2} r2 — 22

Proof. Fix u € C°(S"™') and € > 0. Define Q. = B(0,1 +¢) \ B(0,1) and @ € C°(Q) by

i(x) = u(z/|z]).
Define F : R™\ {0} — R? by F(x)

(Jz|, f(z)). Notice that
e afla]
DF(x)_(... Vf(z) )’

. 1 - V@)
DF(z)DF(z)" = (I.Vf(a:) Vf(‘ ) Vf(x ))’

|z

xT

E
= Vs - (& vi@)

On the one hand, using the coarea formula for F'; we have

/ne ) DE o /Fm >/F<z> v} 45 dy

det(DF(x)DF(2)") = |V f(x)|* - ( 'Vf(x))

2
xT

J]



INTRODUCTION TO PDE

1+e
:/ // u(z/r)dS" % (z) dzdr.
1 R J{|z|=r,f(z)=2}

On the other hand, using the coarea formula for spheres, that is (11)

/Qeﬁ(x)J( (z) ‘“’/ /SB(M DF(z))dS™ }(z) dr

® [ -
/ r" / w(z)J(DF(rz))dS™ " (z) dr.
1 8B(0,1)
Therefore,

= lim

1+e
et / u(z)J(DF(rz))dS™ " (z) dr
e=0Jy 2B(0,1)

1+e
= lim // u(z/r)dS" ?(z) dzdr
0 {le|=r.f(z)=2}

//Sn . Z} (z)dS™*(x)dz.

Formula (12) follows from a direct computation
The subsequent formula (13) is instead the result of a limit. For u € C°(S™™1), set
. _ .2
e () = min{1, (1 —z)/e} u(z).
V1-a3

Then we plug u. into (12). On the one hand, we have

én_l ue(x)v/1 — 22 dS" ' (x)

_ 2
_ / u(z)dS™(z) + / (@) 2= 45m 1 (g,
sn—1n{1—xz2 >e}

sn—1n{1-=2 <e} €

If we take the limit ¢ — 0 we obtain

lim u(z)dS™ () = / u(z)dS™ ! (x)
€0 sr=1n{1—z2 >e} n—1

and

: 1- l’% n—1
lim u(x) —=dS" " (z) = 0.
0 Jgn—1n{1-a22 <e} €
On the other hand, we have

/ / (x)dS™ *(x)dz
—1Jsn—1n{zz= z}

u() n—2
ds" %(z) dz
/ sn—1n{zz=z} \/1—1'2
1— 22

+ / / u(x)
(1N VI=eT=d Jsn—1n{zs=z} ¢

Taking the limit € — 0, we obtain the right-hand side of (13).
The last formula (14) follows from the previous (13): take @(z)

x) := u(rz). Then
/ u(z)dS™ H(x) = """ / u(rz) dS™ ! ()
rdB(0,r) 9B(0,1)

ds"?(z) dz.

(13) P 1/ / n—2
= u(rx)dS ——dz
sn=1n{xz3==z} ) ( ) V 1-— Zz

/ / w(@) ds"2(z) ———— L
—r TS”*lﬂ{igzz}

Vre—3z2 r

z

11
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" — n—2 /- 1 —
= / / u(Z)dS" (T) —=dz.
—r Jrsn—1n{z3=z} r2 — 72

§5.5. Change of variables.

Theorem 5.5 (Change of variables). Let X,Y C R™ be open sets and ¢ : X — Y a
diffeomorphism. Then, for every u € L*(Y),

[ we@ss@)dz = [ utw)ay.
where Jp(x) = det(D¢(x)).

Theorem 5.5 holds for the non-oriented integral. When dealing with oriented integrals,
we need to take care of the sign of the jacobian J¢. For example, line integrals are
usually oriented: If a < b and f € L'([a,b]), then fab f(s)ds is a oriented integral, while
J: (a,b] f(s)ds is not oriented. This distinction becomes clear by the identities

b a
(15) I ds:/a F(s)ds = —/b F(s)ds.

The root of the distinction is the following. A non-oriented integral is the integral of
a function f over a measure space (X,u): [ « fdu. A oriented integral is the integral
of a differential form: for example, [o. f(z,y)dz Ady = — [5o f(z,y)dy A dz. In the
case of integrals of differential forms, the change of variables states: [¢*w = [w and
¢ (dzi A+ Adxn) = Jé - (dzy A -+ Adzy).

On R" with n > 1, we usually think of “dz” as dL"(x), where L" is the Lebesgue
measure, and not as the volume form dzq A -+ Adz,. On R, instead, we usually think of
“dz” as a 1-form.

Forgetting the details, the punchline is that, on line integrals, we need to keep in mind
the indetities (15).

6. SPHERICAL AVERAGES (OR MEANS)

Let X C R™ and Y C R™ be open sets. Foru € L, (X xY),z€ X,y €Y and r > 0
with B(y,r) C Y, define

buleyn) = wlwdi=f uley+rods,
(16) B(y,r) By (0,1)
Yu(z,y;7) ::][aB( )u(ﬂc,z) dS(z) :][ u(z,y + rz)dS(z).

9B(0,1)
If w is continuous, it is clear that

(17) u(z,y) = lim ¢y (2, y;7) = Um y(x, y; 7).
r—0 r—0

Lemma 6.1. If u € C%(X x Y), with a,b € N, then, for every € > 0, ¢u,%u €
CubL/2 (X x Y. x (0,€)), where Yo = {y € Y : d(y,dY) > €}.
Moreover, for all « € N™ and 8 € N*, with |a] < a and |8| < b,

(18) DDy = Ppapf.  ond D3 Dyt = Ypepfu

and

3

Orpu(®,y;7) = — (Yu(z,y;7) — Pul, y57)),

<

(19) r 18) T
Oty (z,y;1) = EgbAyu(m,y; r) ® EAydm(m,y;r).

Proof. Notice that both definitions of ¢, and v, falls into the framework of Theorem 3.3,
which then implies (18). Moreover,

@M@ﬂzl / u(z,z)dz
B(y,r)

anpr™

= 1n// u(zx, z)dS(z)ds
QnT 0 OBy (y,s)
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= m"_n/ s"_ll/J“(m,y;s) ds.
0

Therefore,
Orpu(m, y; ) = *n2f"71/ s" M (@, gy 8) ds + e (@, y;7)
0
n
= L (=¢ul@,yir) + Yulz, yi7)).
Finally,
Oebuleyir) = ——0, [ ulay+r2)ds(z)
nan 8B(0,1)
[by Theorem 3.3] = 1 / (Dyu)(z,y +1rz) - 2dS(z)
non Jop(0,1)
[by Divergence Theorem and (20)] = r / (Ayu)(z,y +rz)dz
nA&n JB(0,1)

r
E¢Ayu($7 Y; T)7
where

(20) div.((Dyu)(z,y + rz)) = r(divy(Dyw))(z,y + r2) = r(Ayu)(z,y + r2).

7. CHANGE OF COORDINATES

§7.1. Differential operator. Let Q2 C R™ be open. A linear differential operator with
smooth coefficients on Q is a map P : C*°(Q2) — C*°(Q) of the form

Py= > P.D%,

aeNn

for some P, € C*°(Q2), all zero but for finitely many indices.

§7.2. An abstract overview. Let Q1,0 C R" be open sets and ® : Q1 — Q2 a
diffeomorphism. We have pull-backs and push-forwards of both functions and differential
operators:
e Pull-back of functions: ®* : C°(Q2) — C*(Q1), PP = o ® for P € C(Q2);
e Push-forward of functions: ®. : C®(Q) — C*(Q), Pup = ¢po &~ for ¢ €
C=(Q);
e Push-forward of differential operators: if P1 : C*°(Q1) — C°°(1) is a differential
operator, then &, P, = &, 0 P; o &
e Pull-back of differential operators: if P> : C°°(Q2) — C°°(Q2) is a differential
operator, then ®*P, = ®* o P, 0 ®,.
The following diagrams might help:

o —2r s o —2 >
O () =2 0 () C=(Q) —25 > 0= ()
Pli ip Pi lPZ
C=(Q) 2> C™() c>( L

Q1) =— C>®(Q2)
Notice that, for all functions ¢ € C™(Q1), ¥ € C*(Q2), and all differential operators
Py C%(Q) = C°°(Q) and Py : C%° () — C°(Q),
C.p= (D)0 =(27) "¢
(®.P1)yp = (Pi(gpo@))od s
(2" P2)d = (Pa(g0@7")) 0 B;
$,8* = 1d, and ®"®, = Id.
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Notice that, if P;, Q; are differential operators, then
(21) " (P20Q2) = (P"P) o (P7Q2), and . (Pro Q1) = (P.P1) o (P.Q1).

Exercise 7.1. A differential operator of order zero on € is of the form P¢ = f - ¢ for
some f € C*°(Q2). Compute . P and ®* P for differential operators P of order zero. Is it
coherent with pull-back and push-forward of functions? O

Exercise 7.2. Let ® : Q1 — Q2 be a diffeomorphism between open subsets of R™. For
j€{1,...,n}, compute ®.9; and ®*9;. O

Exercise 7.3 (Harder). Consider ® : R®™ — R", ®(z) = Az for A € GL(R™), that is A is
a n X n invertible matrix. For o € N, compute ®*D* and ®,.D“. O

§7.3. An example: Laplacian in polar coordinates. Consider
@ : (0,400) x (—m,7) = R*\ ({0} x [~00,0]), ®(r,0) = (rcos(9),rsin(h)).

This function ® is a polar parametrization of the plane: polar coordinates are in fact the
inverse function of ®. In other words, we can define functions

(22) r,0: R? \ ({0} x [-00,0]) — R, such that ®(r(z,y),0(z,y)) = (z,y).

Anyway, with the function ® above, we want to compute ®*A. To do this, using
Exercise 7.2, we first compute

_ (cosf —rsinf ~1_ 1 (rcos rsinf
Dq)(r’e)_(siHG rcos@)’ D(r,0) _7(—sin9 COSG)'

T
Therefore,
(®*0;)(r,0) = DP(r, 9)—1 (a'z|q>(7~,0)) — cos00, — smt‘)ag
(@°0,)(r.0) = DO(r,0) " (9y]ar0) = sin 0, + 2.
Using now (21), we obtain
* * " 1 1
(23) A = (9°9,)% + (9°8,)? = [..] :33+T—28§+;ar.

This formula represents “the laplacian in polar coordinates”.

§7.4. Another interpretation of the previous change of variables. We have an-
other interpretation of the computation we made in (23). Define the vector fields

Ur(z,y) = cos 00 + sin 09, = M,
/$2 +y2

Uo(z,y) = rsin@0, + rcos 00y = —yds + x0y,

where we see 6 and r as the functions defined in (22). These are the push-forward vector
fields ®.0, and ®.0p, respectively. As such, one usually simply writes 9, and 9y for ¥,
and vp. We keep the distinction here for purely educational purposes.

At this point, we can write 0, and Jy in terms of ¥, and Up:

. sinf _,

Or = cos 0, — Vo,
L cosf _,

0y = sin 07, + Tg.

We can now perform the computation (23) again as

in6 _,

. , 1
Azaz-i-aj:(00595}_571)9)2_'_(81119@_’_ cosf _, )

_, 1.
’Ue)2 =[.]= 7>+ r—Qvg + U,

[1¥x4

where, we recall, r, 0 are the functions defined in (22), and “¥, = 9,”, and “¥p = 9p”.



INTRODUCTION TO PDE 15

§7.5. Exercise: Laplacian in polar coordinates in arbitrary dimension.
Exercise 7.4. Consider the polar coordinates in R™ given by the function ® : (0, +00) X
Rnfl N an

D(r,01,...,0n_1) = r(cosb,sin b1 cos b2, sin Oy sinf cos s, ... ,sinfy - --sinfp_1).

(1) Determine domain and image of ® so that it becomes a diffeomorphism;
(2) Compute the laplacian in polar coordinates in R™.

8. MOLLIFIERS

Let p € CZ(R™) be such that spt(p) = B(0,1), 0 < p <1, p(—z) = p(z) for all z, and
J pdz = 1. Define pc(z) = p(z/€)/€". We call the family {pc}e>0 an approzimation of the
identity on R™, or a family of mollifiers.

For example, one can take

k —— if 1
(24) plz) =" P (W—l) e N
0 otherwise,

where k normalizes the integral. The family of mollifiers given by the function p in (24)
is called standard family of mollifiers.

Exercise 8.1. Show that the function
1 .
exp (770 — ) if |[z] <1
po(x) = a1 & .
0 otherwise,

is C*-smooth on R" and compute [;" po(x) dz. Show also that po is not analytic. Does
it exist a family of analytic mollifiers? O

TODOPROPRIETA’ DEI MOLLIFICATORI.
Proposition 8.2. ux p. € C> TODO
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Part 1. Four classical PDE
9. TRANSPORT EQUATION
This is [5, Section 2.1]. The transport equation is the initial value problem

Otu+b-Vu=f onR" xI,
u=g on R™ x {to},

where I C R is an interval, to € I, b€ R", f: R" x I — C and g : R" — C. The function
u is intended as a function in two variables, u = u(z,t), where z € R"™ and ¢t € I. The
derivative 0;u is the derivative along the second variable, ¢, while the gradient Vu is the
derivative of u in the variable z.

If f = 0, then we call (25) the homogeneous transport equation. If f # 0, then (25) is
the nonhomogeneous transport equation.

A solution to (25) is easily found.

(25)

Theorem 9.1. Let I C R be an open interval, to € I, b € R™, f € C°(R™ x I), and
g € CH(R™). Then the function u € C*(R™ x I) defined by

(26) u(z,t) = glx — (t — to)b) + /tt flx+ (r—=1t)b,r)dr

is the unique solution to (25).

Proof. To show that u is a solution to (25), we just compute the derivatives:

Owu(z,t) = =Vg(z — (t — to)b) - b+ f(z,t) — /t Vf(x+ (r—1t)b,r)-bdr,

Vu(z,t) = Vg(z — (t — to)b) + /t Vf(x+ (r—t)b,r)dr.

It follows that u solves (25). ~
To show that « is unique, suppose that @ € C* (R™ x I) is another solution. Then the
difference w := u — @ solves (25) with f = 0 and g = 0. Notice that
diw(x+sb,t+s) = Vw(z + sb,t+s) - b+ dw(x + sb,t +s) =0
s
Therefore, for all (z,t) € R" x I, we have w(z,t) = w(z + (to — t)b, to) = 0. O

Remark 9.2. The function u defined in (26) is well defined even in the case g is not
smooth. In some sense, these other functions could be regarded as weak solutions to (25)
when ¢ is not C*.
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10. LAPLACE EQUATION

§10.1. Laplace operator. For U C R™ open and v € C*(U), define the laplacian of u
as
n g2
A= div(Vu)) = | %.
g=1""J

The operator A := Z?Zl 07 is the Laplace operator.

§10.2. Harmonic function. A harmonic function on U C R™ open is a function u €
C?*(U) such that Au = 0.

Exercise 10.1. Show that the only harmonic functions on R are the affine functions. ¢

§10.3. Symmetries of Laplace operator. Let U C R" open, u € C*(U), O € 0(n),
bc R™, and A € R\ {0}. Define @(y) = u(AOy +b). Then @ € C*(A\"*O~ (U — b)) and

Au(y) = N (LAu)(AOy + b).

§10.4. How to find the fundamental solution: radial solutions. In this section we
solve the following Exercise 10.2, which asks to find radial harmonic functions on R":

Exercise 10.2. For n > 2, find smooth non-constant functions u : R™ \ {0} — C that are

radial, that is, they only depend on the distance from the origin, and harmonic, that is,
Au = 0. O

In what follows, we solve Exercise 10.2. The reader is invited to solve it first by
themselves: it is actually easier than it looks like at first.

Such radial harmonic functions are expected to exist because of the symmetries of
the laplacian that we have seen in the previous Section §10.3: since the laplacian has
spherical symmetry, we expect to have harmonic functions with spherical symmetry. We
expect these functions to be somehow special: they are indeed, and we will see in the
forthcoming sections that among them we find fundamental solutions of the laplacian.

Another type of symmetric harmonic functions are those that are homogeneous with
respect to dilations. I invite the student to try to characterize those too: they are the
so-called spherical harmonics...

Done with Exercise 10.27 Here is my take.
We consider functions of the form u(z) = ¢(|z|?), with ¢ : (0,400) — C smooth. I
choose to take the squared norm because in this way derivatives are easier. The we have
ou
S (@) = (o) 2
&u ,
=5 (@) = ¢ (|J2*)da] + ¢/ (|2]*)2;
oz
Au(x) = 4¢" (|z]*) |2|* + 2n¢' (Ja]*).
Since we want Au(z) = 0 for = # 0, we obtain that ¢ must satisfy
(27) vt € (0, +00), 4¢" (t)t + 2n¢'(t) = 0.
Take ¢ = ¢’: then ¢ must satisfy

P't) _ _mnl
o) 2t

We are assuming 1(t) = ¢'(¢) # 0 for all ¢ > 0, because if ¢’(t) = 0 for some ¢, then ¢
constant, i.e., ¢’ = 0, is a solution to the ODE (27). Since this ODE has unique solution
given ¢’ at one point, we conclude that either ¢ is constant or ¢’ is never zero. So, v does
satisfy (28).

The ODE (28) is equivalent to

(28) vt € (0, +00),

vt € (0, +00), prs log(y(t)) = — = — log(t),
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2 2
n=3

1.5 1.5
1 1
0.5 1 0.5

n=3
0.5 1 p=215 2 0.5 1 1.5 2
n=2
—0.5 - —0.5

FIGURE 1. Plots of |z| — ®(z) (left) and of R [}, ) ®(z) dz (right)
for n =2, 3.

which is in turn equivalent to
Jee C, Vte (0,+00), log(¢(t)) = —g log(t) + c.
Exponentiating and integrating, we obtain that non-constant solutions of (27) are
t
Jda,ce C Vt € (0,+00), gzﬁ(t):a—&—ee/ 572 ds.
1

Here we need to distinguish tow cases:

n=2: o(t) = a+ e“log(t),
2e° 2e 2-n
2: t) = - t 2.
n > o(t) (a 2—n>+2—n

This might be pedantic, but we have shown that all functions required by Exercise 10.2
are all functions of the form

n=2: u(x) = a + blog(|z|),
b
n>2: u(z) =a+ ——,
||

for every choice of a,b € C.

§10.5. Fundamental solution of the Laplace’s equation. Define ® : R" \ {0} — R

by
-5kl if n = 2,
(29) o(z) = 2 losllel) o ifn
A= D ez 23,

where w,, is the volume of the unit ball in R™. We will call this function ® the Fundamental
solution of the Laplace’s equation. The most important property of this function is its role
in Theorem §10.6. In fact, we will see fundamental solutions of linear operators from an
abstract viewpoint in Section §13.33.

Proposition 10.3 (Properties of the fundamental solution). Let n > 2. The fundamental
solution @ : R™ \ {0} — R of Laplace’s equation, defined in (29), satisfies the following
statements.
(1) ® is an analytic function R™ \ {0} — R. Ifn > 3, then ® is strictly positive
valued.
(2) For every x € R™ \ {0},

1 =z

(30) Vo(z) =

-~ nwn 2]
(8) For every z € R™ \ {0},

1l z®«x 1 Id

1 D?®(z) = — =2 —
(3 ) (x) Wn |1,'""‘+2

nwy, |z|*’
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(4) AP =0 on R™\ {0}.
(5) There exists C > 0 such that for every x € R™ \ {0}:
(a) 0 < ®(x) <Clz)>™ ifn>3;

22 (2)| < o, forall j €41, n};
(c) oy axk( )’ < %, forall j,k € {1,...,n}.
(6) e LIOC(]R”) with
B (1 —2log(R)) ifn=2
32 / &(z)de =4 ¢ ) ’
(32) B(0,R) (=) { 2

3tn=2) ifn > 3.

See Figure §10.4 for a plot of these quantities.

Proof. Part 1 is clear.
Statement 2 is proven as follows. If n = 2 and & € R? \ {0}, then

11 =z 1 =z
Therefore, |V®(z)| = ﬁm
If n >3 and « € R™ \ {0}, then
1 2-m—1 & 1 x
4 Plx) = —(2— o

Therefore, |V®(z)| = ﬁll‘% Notice that (33) and (34) are summarized in (30),
because «(2) = .

For 3, we compute

D*®(z) = — 1 1d +z® —n\a:|_"_li
N |z

1 I 1 zQx
nwn |z|" wy |zjnt2

In other words,

>’ d 1Ly
Erer el COl il Ry =
;0T x; nwn ||
N T T —n— 11 )72
= (m|" zEn|z| Zx 2z

1 (Sjk 1 TkIj

T Jam o el

So, we have (31).
Statement 4 is now an easy computation: if x € R™ \ {0}, then

AD(z) = trace(D*®(x))
1 trace(z ® z) 1 trace(Id)

wo |zt nwn - |z|"
1 1 1 n

won 2" o]t

The estimates 5 are a consequence of the explicit formulas we have computed.
The last two formulas stated in part 6 are simply computed as follows. For n = 2, we

have
27
/ D(x) dx———/ / log(r)rdfdr
B(0,R)

= 7/0 log(r)rdr

2 R

r 172
r g
20+/0 r2

[Integration by parts] = — (log(r)
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= —log(R)

-5t = —(1 —2log(R)).

R?> R?
2 T4

1
2
For n > 3, we have

1 1
O(z)dx = 7/ ——dx
/B(O,R) n(n —2)wn Jpe,r) |z["2
1 /R/ 1 n—1 n—1
= ——dS" (z)r" " dr
n(n — 2)wn Jo 2B(0,1) |z|n—2
R

= n / rdr
(= 2)wa Jo

1 R?

(n—2) 2°

§10.6. Solution to Poisson equation.

Theorem 10.4 (Solution to Poisson equation). Let f € CZ(R") and define for x € R™

(3) u@) = [ Swfa-piy= [ oa-nfo)ds
Then u € C*(R™) and
(36) —Au=finR"

Proof. Recall that, since ® € L{ (R™) by Proposition 10.3.6, and since f is continuous
with bounded support, then, for every x € R", the integrand y — ®(y)f(z — y) is inte-
grable. It follows that u is well defined and that the identity between the second and the
third expressions in (35) is a simple change of variables.

We need now to prove the regularity of u. For z,y € R", define

Ky(z,y) = ®(y) f(z —y).
Fix R > 0 and set X = B(0, R). Let S > 0 be such that spt(f) C B(0,S): then, for every
reX,
K5 (2, y)| < |[flleee - @(y) - Lo, r+5)(Y)-
Notice that the function gy : y — || fllze - ®(y) - 1p(o,r+s)(y) is integrable over R™. By
Theorem 3.3, the function u is continuous on X. Moreover, since
DKy = Kpey,

then, again by Theorem 3.3, v € C?(X). Since this holds for every R > 0, we conclude
that u € C*(R™).

We have also obtained that, always from Theorem 3.3, for ever a € N with |a| < 2,

D*u(z) = [ @)D" f)(e = 9)dy.
We conclude that
Bul) = [ e@)AHE - )dy.

We need to compute the latter integral.
For € > 0, we set

Au(z) = /B o BOANE =yt / B(y)(Af)(x — ) dy.

"\B(0,¢)

Ie Je
From (32) we obtain that, if € < 1/2, there is C' > 0 (depending on n) such that

CllAf|L~elog(e)]  ifn =2,

I < |Af|lLee
RN N itn >3

|@(y)|dy < {

,€
In both cases, we have

lim I. = 0.
e—0
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For J., we compute

/ D(OF)(@ — y) dy
R\ B(0, e)

/ Ay(flz - y)) dy
Rn\ B(0, e)

/ divy (B(y)Vy f(z — y)) dy - / V,0(y) -V, f(z — y)dy
R™\B(0,¢) R7\B(0,€)

IS

7

2y div, @)V, Sz =) dy + | divy(V,®(y)) - f(z — ) dy
R\ B(0,¢)

-

R7\ B(0,€)

_/ divy (f(z — y)V,®(y)) dy

R™\ B(0,¢)

P @@Vl dy - [ divy(fle )V, B() dy
R\ B(0,¢) R7\ B(0,¢)

@7 — i n—1 - i 1
O sV e [ )T s ).

Le Ke

We then have that, for e < 1/2, there is C' > 0 (depending on n) such that

Lol < [V f]loe / B(y)ds™ " (y)

9B(0,¢)

< JCIVflize=llog(e)le if n =2,
CIIVfllr=e ifn>3.

In both cases, we have

lim L. = 0.
e—0
The remaining quantity is
K.= fl@—y)Vy@(y) - 2L ds" (y)
8B(0,¢) \y\
1 / Y Y qn-1
= - fle—y)—n 7 dS" ()
NWn J5B(0,¢) lyl™ |yl
1 / 2—n—1 n—1
= - f(@—y)lyl ds" (y)
NWn JoB(0,¢)

1 / n—1
- f(z—y)dS
e Jono (z—y) (y)

—f  fa-dsw.
9B(0,¢)
We conclude that

(37) lim K. = —f(z).
We conclude that (36) holds. O
From the proof of the above Theorem 10.4, we obtain the following corollary

Corollary 10.5 (Fundamental property of the fundamental solution). Let U C R™ open
and f € C°(U). For every x € U,

. —x
lim F)Vy @z —y) - L= dS(y) = —f(2);
=0JoB(x,c) ly — =
or, equivalentely,
. Yy
lim flx—y)VyP(y) - = dS(y) = — f(x).
iy [ I 0)V) dSe) = /@)

Proof. See (37). O
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Remark 10.6. (1) We are inverting the Laplacian, in some sense.

(2) If ¢ € C*(R™) is harmonic (e.g., a harmonic polynomial), then A(u+ ¢) = Au =
f. So, the above integral formula (35) selects one solution among many.

(3) Our integral formula is only solving Au = f on the whole space R™ and only for f
with compact support. There are various direction in which to extend this result:
to f continuous (in fact, f of class C? looks weird: if u € C?, then we expect
f = Au e C° [see §13.34]; to f not with compact support (in fact, the selected
u does not have compact support anyway); to the case of f defined only on an
open subset U [see §10.17]. I hope we can see all these extensions in this course:
we will check!

Exercise 10.7. Using the ideas in the proof of Theorem 10.4, prove the following state-
ment: If u € C%(R™) is such that Au € C2(R™), then, for every x € R™,

uw) = - [ 2 - pduly) v

Can you weaken the condition “Au € C2(R™)"?
Hint. Look also at Theorem 10.39. O

§10.7. Mean value property. See Section 6 first.

Theorem 10.8 (Mean value property for harmonic functions). Let U C R" be open and
u € C*(U). The following statements are equivalent:

(i) w is harmonic, i.e., Au = 0;
(i) Yx € U, ¥r > 0, such that B(z,r) C U,

u@ =, ul)asw.
OB(z,r)
(i) Yo € U, ¥r > 0, such that B(x,r) C U,
O L
B(z,r)
Proof. As in (16), we set

dulz;T) ::][ u(z)dz, and y(z;7T) ::][ u(z) dS(z).
B(x,r) OB(x,r)
Then, from (19) we have,

n

(38) Ordu(zir) = —(Yulz;r) = dulz;7)),
(39) Ortbu(wir) = ~baulwir).
(1) = (i1): By (39), if Au =0, then 9,v, = 0, i.e., 7 — 1, (x;7) is constant and, since
B(z,r) C U, we have
u(@) 2 Tim (33 €) = v (7).

(i) = (4ii): Let = € U and r > 0 be such that B(x,r) C U. Then

][ uly) dy = / / u(y) dS(y) dr
B(z,r) wn Jo OB(x,s)

= %/ ][ u(y) dS(y)s"i1 dr
r 0 JoB(z,s)
@ u(x)i/ s"Hdr = u(x).
™ Jo
(iii) = (#1): Let x € U and r > 0 be such that B(z,7) C U. From (38), we obtain,

0= drdulair) = = (wu(air) — ul2),

e, Yy (z;r) = u(z).
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(i4) = (4): Let x € U. From (39), we have

Au(zx) D tim dau(z;T) @ i E8,«1[)“(96;7') @ .
r—0 r—0 7r

O

Remark 10.9. If 0B(z,r) C U but B(z,r) ¢ U, then the mean value formula does not
need to hold. Find an example.

Exercise 10.10. For all n > 2, compute
var)i=f  a(u)ds),
dB(0,r)

where @ is the fundamental solution of the Laplace equation. Is 7 — 14 (0;r) constant?

%

Exercise 10.11. In the proof of Theorem 10.8, we have shown (ii) = (i). Give a direct
proof of (iii) = (i). O
Exercise 10.12. Show the equivalence (iii) < (1) assuming only u € C°(U). O

§10.8. Strong maximum principle.

Theorem 10.13 (Strong maximum principle - First version). Suppose U C R™ is open and
connected, and u € C*(U;R) is harmonic. If there exists x € U is such that u(x) = supy u,
then u is constant.

Proof. Define
M =supu and W ={zecU::u(z)=M}=u'({M}).
U

Since u is continuous, then W is closed in U.
We claim that W is open. If x € W, then there is r > 0 such that B(z,r) C U, because
U is open. Therefore, since u is harmonic, by Theorem 10.8 we have

M=u@) L gy S
B(z,r)
where the inequality (x) is strict! unless u(y) = M for all y € B(z,r). It follows that
B(z,r) C W.
In conclusion, since U is connected and W C U is both open and closed, then W &
{0,U}. If W is not empty, then W = U, i.e., u is constant. O

Exercise 10.14. Show that, if u € C°(B(0,7);R) is such that u < M on B(0,r), then
fB(z ” u(y)dy < M, with equality if and only if w = M on B(0,r). O

Theorem 10.15 (Strong maximum principle - Second version). Suppose U C R" is open
and bounded, and u € C*(U;R) N C°(U;R) is harmonic. Then
max u = max u.
U U

Proof. We clearly have maxy u > maxgy u. Suppose that there exists x € U with u(z) =
maxg u. We need to show that there is also a point on OU with the same value. Let
C C U be the connected component of U containing x. Since C' is open and connected,
by Theorem 10.13, u is constant on C. Therefore, if y € dC, then u(y) = u(z) = maxg u.
Since R™ is locally connected, then C' C AU (see Exercise 10.16). Therefore,

maxu = u(z) = maxu < maxu.
U aC U

ndeed, if |B(z,7) \ W| > 0, then

1
ooy = o ( Ji w(y) dy + o) dy>
B(x,r) [B(z, )| \J/B(,mnw J B (e, r)\W

< m (M|B(z,7) N W|+ M|B(z,r) \ W|) = M.
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Exercise 10.16. Show the following statement: Let X be a locally connected topological
space and U C X open. Let C C U be a connected component of U. Then 0C C 9U.
After this, show that the hypothesis of X being locally connected is necessary. In other
words, find an example of a topological space X that is not locally connected, and U C X
open that has a connected component C C U with 8C N U = 0. O

Solution to Ezercise 10.16. Let « € OC. Then & € U. If x € U, then there exists a
connected neighborhood V of z with V' C U. Since x € dC, then V N C # (). We then
have C UV C U is connected. Since C' is a maximal connected subset of U, we conclude
V C C, in contradiction with x € 9C. O

Exercise 10.17. State and prove the Strong Minimum Principle for harmonic functions,
both in the first and second versions. O

Exercise 10.18. Show the strong maximum and minimum principles for harmonic func-
tions without using the mean value property, i.e., explicitly using that Au = 0.

Hint: First consider u € C?*(U;R) with Au > 0 in U. Suppose = € U is such that
u(z) = maxy u. Then ¢t = 0 is a point of maximum for ¢ — u(z + te;), for each j €

{1,...,n}. Therefore %(w) = % . Ou(x—|—tej) <0. O
3 =

Remark 10.19. In Theorem 10.15, we actually prove more than what we claim. In fact,
do not need “u € C?*(U;R) N C°(U;R) harmonic”, but only u € C°(U;R) satisfying the
mean value property, as stated in Theorem 10.8.(ii). See also Exercise 10.12. Maybe, in
your personal notes you can rewrite these statements in the more general form.

§10.9. Subharmonic functions.

Exercise 10.20. Let U C R™ open. A function u € C*(U) is subharmonic if and only
if Au>0on U. A function u € C*(U) is superharmonic if and only if Au < 0 on U.
(Notice the inversion between “sub” and “>").

State and prove modified versions of Theorem 10.8 and Theorem 10.13 for subharmonic
functions.

After this, do the same for superharmonic functions. %

§10.10. Monotonicity of Laplace’s boundary value problem.

Corollary 10.21. Let U C R™ open, bounded and connected. Letu € C*(U;R)NC°(U;R)
and g € C°(OU;R) be such that

Au=0 inU,
{u =g on U.
If g is not constant and g > 0 on AU, then u >0 on U.
Exercise 10.22. Write a proof of Corollary 10.21. O

Exercise 10.23. Write and prove a version of Corollar 10.21 for sub- and superharmonic
functions. O

§10.11. Uniqueness for the Poisson equation.

Theorem 10.24 (Uniqueness for the Poisson equation). Let U C R™ be open and bounded,
f€C’U) and g € C°(OU). B
There exists at most one solution in C*(U) N C°(U) to the boundary value problem

(40) {Au =f U,
u=g on U.

Proof. Suppose ui,uz € C*(U) N C°(U) are solutions to (40). Then if u is the real or
imaginary part of u1 — uz, then u € C*(U;R) N C°(U;R) and u solves

Au=0 inU,

u=0 on U.

Apply the maximum principle Theorem 10.15 and the minimum principle (or the maximum
principle to —u), to conclude that v = 0 on U. Therefore, u1 = us. O
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§10.12. Smoothness of harmonic functions.

Theorem 10.25. Let U C R™ be open and u € C°(U). Suppose that u satisfies the
spherical mean-value property, i.e.,

(41) VeeUVr>0 st Bz,r)CU: u(z) :]ém )u(y) dsS(y).

Then u € C=(U).

Proof. Let {ne}e>o0 be the family of standard mollifiers. Recall that n.(z) = 7(|z|/€)/e™ for
a compactly supported function 77 € C*°(R) with 7 > 0, spt(77) C [~1,1], and [, 7(t) dt =
1. In particular, it follows that spt(n.) C B(0,€) and [, ne(z)dz = 1.

We will show that the spherical mean-value property (41) implies that, for every € > 0,
U* 1M = U on

Ue = {z € U : dist(z,dU) > €}.

Since u * ne € C*°(U.) by Proposition 8.2, we will conclude u € C*(U).

So, if € Ue, then

u*w):/B( (el )y
:// u(y)ne(z —y)dS(y) dr
0 JoB(z,r)

:/0 fie (1) (/aB@,T) dS(y)) ]{9B(z,r) u(y) dS(y) dr

(41

W ) /0 () /6 o A5G

~uw [ f o ele =) A5 dr
—u(e) [ nela ) dy = (o)

Corollary 10.26. Harmonic functions are C* smooth.
§10.13. Analyticity of harmonic functions.

Proposition 10.27 (Estimates on derivatives of harmonic functions). Let U C R™ open
and u € C*°(U) harmonic. For every x € U and r > 0 with B(z,r) C U, and for every
a € N" with |a| = k we have

Co= -1, and
(42) D% u(z)| < iHUHLI(B(z ) where " (BT
rntk ’ Co="—( " fork>1

The proof of Proposition 10.27 will come after a few lemmas.

Lemma 10.28 (Derivative of harmonic functions). Every partial derivative of a harmonic
function is harmonic.

Proof. Let U C R™ open and v € C*°(U) harmonic. If j € {1,...,n}, then

A@ju) = Ohou=0; Y  dhu=0;Au=0,
k=1 k=1
because 0;0, = 0,0; for all j, k. So, all first-order derivatives of u are harmonic. Iterating,
all derivatives of harmonic functions are harmonic harmonic functions. O

Lemma 10.29 (Case k = 0). Let U C R™ open and u € C°°(U) harmonic. For every
x €U and r > 0 with B(z,r) C U,

(43) u(2)] <

ot “uHLl(B(z,r))'
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Proof. The ball mean-value property for harmonic functions gives

][ u(y) dy
B(x,r)

u(z)| =

< o Nlull L1 (B(e,r)-

O

Lemma 10.30 (Case k = 1: Estimate of first derivatives of harmonic functions). Let
U C R" open and u € C*(U) harmonic. For every x € U and r > 0 with B(z,r) C U,
and for every j € {1,...,n} and 6 € (0,1), we have

1
(44) @] < g [ Juw)]dS()
g wn(07)™ JoB(a0m
As a consequence, we also have
2"ty 1

(45) |0ju(zr)] < m”uHLl(B(z,r))'

Proof. Fix j € {1,...,n}. By Lemma 10.28, 9;u is also harmonic, and thus it has the
mean-value property. Therefore, for every 6 € (0,1),

@l =|f  ou)dy
B(z,0r)
- / div(ue;)(y) dy
wn(er)” B(x,0r) !
1 / Yy—x
=— u(y)e; - dS(y
O |Jopeon " Ty al 4 )'

1
< T oy, IS

This shows (44). Next, we use the fact that, if y € dB(zx, 0r), then B(y, (1—0)r) C B(z,r).
Thus, applying Lemma 10.29 to the running estimates, we get

1
T /a PO

E 1 ds
h W/m)m lellz2 5y, 1-0yry) AS(y)

1 1 n—1
< n
= wn (0r)" wn (1 — Q)T)nnw (0r) Hu”Ll(B(m,r))

|0ju(z)| <

_ n
- wng(l — e)nrn+1 ||uHL1(B(z,7‘))
All in all, if we take 6 = 1/2, we have (45). O

Proof of Proposition 10.27. We shall argue by induction over k.

For k£ =0 and k£ = 1, we have already Lemma 10.29 and Lemma 10.30, respectively.

Let m > 1 and assume that (42) holds for all k¥ < m. We now prove (42) for k = m+1.
Let o € N" with || = m + 1. Then there is 8 € N" with |3] =m and j € {1,...,n} such
that D% = D752

The function D?u is harmonic by Lemma 10.28. We apply Lemma 10.30 to the function
DPu and get that, for 6 € (0,1),

ID%u(x)| = |9;D"u(x)|

< g [ IDuwlasw
S o uly )
w”(er)n OB(z,0r)
[inductive hypothesis| < ! Cm [l / dS(y)
— 1 x,Tr
wa(Or)" (1= @)ryrdm THEEED) fo o om)

1 1
(1 _ 0)n+m9 rnt+m+1 ”u”Ll(B(QCvT))’

=Cmn
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Taking § = —2— and C,, = W, we get

m+1
(2nnm)m n(m + 1)m+n+1 1
1 lull 21 (B(x,m)

Do) < &0 s
2"n(m+1))"" 1
Fntm+l llwll 1 (B(ary)-

[computations] <
Wn,

O
Exercise 10.31. Let a,b < 0 and define ¢ : (0,1) — R, ¢(6) = 6°6°. Find the minimum
and the point of minimum of ¢ on (0, 1).

4 " “ a+b
Solution: 0m = %3 and ¢(0m) = (m) : 0

Theorem 10.32 (Analyticity). Harmonic functions are analytic.

Proof. NOTA BENE: This proof contains a mistake. Find it and correct it. The correct
proof is in Section §18.1, page 122.

Let U C R"™ be open and v € C°°(U) a harmonic function. Fix & € U and set
# = Ldist(&,0U). We claim that there exists e € (0,1) such that, if

r < €r,

then the Taylor series of u centered at & converges on B(Z,r) to u, that is, for every
x € B(&,r),

_ D®u(z) N
o) = Jim 3 3 DD
k=0 |a|=k

To this aim, define the reminder function
N-1

D*u(z o

Ry(@) =u@) - 3 3 a,( ) (s — #)°.

k=0 |a|=k )

For every x € B(Z,r) there exists t, € [0,1] such that

Ry(a) = 3 Dl +at!(““’ =) (4 _ e

la|=N

Using Proposition 10.27, we make the following estimate: since & + t(z — &) € B(Z,r) C
B(z, ),

D (e + ta = )|

ENGEDS

la]=N

(2) (2" NV ||u 2,7 1
z ( ) AHlej‘le(B( ) N S L
WnT™ [0}

|a|=N

al

o) Nl B N ont nn®
= %e (2"T'nN) NT
lullzr(Bes,m) V2rN(N/e)Y (2" 1n®N)Y
W™ N! V2rN(N/e)N
Ml @) V2rN(N/e)N (2" n?e)N
o N Vo N

where we have used the Multinomial Theorem
N _ N . N!
(46) =0 V= o
Jj=1 |a]=N

Using Stirling’s formula
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we conclude that, if € € (0,1) is so that ¢2""'n?e < 1, then limy 00 | Ry (2)| = 0. O
§10.14. Liouville’s Theorem.

Theorem 10.33 (Liouville’s Theorem). If u: R™ — C is harmonic and bounded, then u
18 constant.

Proof. Fix x € R™. Then, for all » > 0, we have from Proposition 10.27,

| Ou nC’l/
Du(z)| < — ()| < — u(y)|dy
pute) < 32 [ =y N

TLCl HUH w rn _ nCleL“uHLOO(Rn)
- pn+l Loo (R™)Wn - r .

Since this inequality holds for every r > 0, then Du(xz) = 0. Since x is arbitrary, then
Du =0 on R", i.e., u is constant. O

Exercise 10.34. Prove Liouville’s Theorem using only the ball mean-value property.
Solution: Fix & € R" and z € B(&,1). Then

]1 u(y)dy—f u(y) dy
B(z,r) B(z,r)

1
/ u(y) dy */ u(y) dy
B(a,r)\B(3,r) B(2,7)\B(a,r)

WnT™
lu(y)| dy

=,
T wnT" JBGr+1)\B(&,r—1)
r+10D"—=@r-1)"
rrln
700

= l[ullzoe@ny (L +1/r)" = (1 =1/r)") — 0.

u(z) — u(®)] =

IN

[l oo emy

§10.15. Representation formula. Define

C3(R™) = {u € C*(R") : ||Ju||r < oo}
Theorem 10.35. Suppose n > 3 and fix f € C2(R™). The solutions u of —Au = f in
CZ(R™) are exactly all functions in the family

{xn—>/n<b(m—y)f(y)dy+c:cG(C}

Proof. We already know that the function @(z) = [5, ®(z — y)f(y) dy is of class C* and
solves —Aw = f, see Theorem 10.4.
We claim that @ € CZ(R™). Indeed, if spt(f) C R™\ B(z, R), then

a(x)] =

/ Bz — )/ (y) dy
spt(f)

< [fllzee ®(R)[spt(f)]-

So, if spt(f) € B(0, L), then for every z with |z| > L, we have @(z) < || f||zo |spt(f)|®(|z|—
L). Therefore, lim, o |%(x)| = 0. In particular, % is bounded on R™.

If —Au = f and if u is bounded, then u—1a is bounded and A(u—) = 0. By Liouville’s
Theorem 10.33, u — @ is constant. O

§10.16. Harnack’s Inequality.

Theorem 10.36 (Harnack’s Inequality). Let U C R™ be open and V € U an open and
connected subset. There exists C > 0 (depending on U and V) such that, if u : U —
[0, +00) is harmonic on U and non-negative, then

supu < C'inf u,
v v
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or, equivalentely,

Ve, yeV: u(z) < Cu(y).

Proof. Let r = 1dist(V,8U). If z,y € V are such that |z — y| < r, then, by the mean
value property Theorem 10.8,

u(z) = ]i(a;,w) u(z) dz

o (U,
=—— u(z)dz + / u(z)dz
wn(27~)n < B(y,r) B(z,2r)\B(y,r)

1 1
[since u > 0] > o o u(z)dz = 2—nu(y).
Since V is compact and connected, there is a finite family of points z1,...,zx € V such

that |z; —zj41| <rand V C U;V=1 B(zj,r); see Exercise 10.38. Then, whenever z,y € V,

wnz (5) )

Remark 10.37. Here are a few comments to Theorem 10.36:

(1) If infy uw =0, then u = 0.

(2) If infy w = 1, then sup,, u < C, where the constant C' is determined by U and V,
but independent on wu.

(3) Example on R: take V = (1,2) and U = (0,4) and make a picture of affine maps
that must be positive on U.

Exercise 10.38. Let K C R" be compact and connected and r > 0. Show that there is
a finite family of points z1,...,znx € K such that |x; —zj+1| < r and K C U;.V:l B(zj,7).
o

§10.17. Green’s function. (See section 2.2.4 in Evans’ book)

Theorem 10.39 (Representation formula using Green’s function). Let U C R™ be open,
bounded and with C' boundary OU. Suppose that there exists a corrector function ¢ :
UxU—=R, ¢(z,y) = ¢"(y), such that, for every x € U,

Np* =0 in U,
¢"(y) = ®(y —x) Vyedl,
where ® is the fundamental solution in R™. Define the Green’s function of U as
G:{(I,y)EUXUIJ:#y}—}R, G(.If,y):@(y—it)—qf)z(y)
If u € C*(U), then, for every x € U,

@ @ == [ VG ) dsw) - | M)l d
U U
In particular, if f € C°(U), g € C°(AU) and u € C*(U) are such that
—Au=f inU,
u=yg on OU,

then, for all x € U,
u@) =~ [ gWV6(9) ) dSw) - [ F@)6() dy.
oU U
Proof. If € > 0 is such that B(z,€) € U, then

/U Au(y)G(z,y) dy = /B L BuGE ) / Au(y)G(z,y) dy.

U\B(z,e¢)
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where both Au and G(z,-) belong to L' (U) and thus

lim Au(y)G(z,y)dy = 0.

e—0 B(x,¢)

Set Ve = U \ B(z,¢). Then

LAu(y)G(z,y) dy:/ divy (Vu(y)G(z,y))dy — | Vu(y) - V,G(z,y)dy
Ve e Ve

- / divy (Vu(y)G(z, y)) dy — / divy (u(y)V, G (2, y)) dy

€ €

+ / u(y) DyGlz,y) dy
————

€

= Vu(y)G(z,y) - vv. (y) dS(y) — / w(y)VyG(z,y) - vv. (y) dS(y)

Ve Ve
— X
—- [ Va6 L=E 8w + [ V) G, p) ) dS()
8B(z,€) \?/ — | U T’
— X
- [ wwViGanasw)+ [ a6 L ast)
oU OB(z,€) |y - xl
— X
—- [ VG P asw) - [ un)9,Geds)
OB(xz,€) ‘y - l’| ou
—z ® -
e I asw) + (@), (1) - L= ds(y).
dB(z,e€) ly — x| OB(z,€) ly — z|
Since we have
(48) lim G(z,y)Vu(y) - y—z dy=0
=0 JoB(x,e) ' ly — | ’
(49) lim u(y)Vy®@(y — x) - y—z dy = —u(z), (see Cor. 10.5)
=0 JoB(z,e) ly — ]
(50)  lim u(y)Vyd® (y) - L dy =0
€20 JoB(x,e) . ly — | '
then we conclude that
[ suwGe iy =tn [ suwGepds [ su)Ge
U €0 B(z,e€) U\B(x,e)
— (@)~ [ u)V,Gen)
au
So, we have (47). O

Remark 10.40. If U is connected, then for each x € U there exists at most one corrector
function ¢®, by Theorem 10.24. At the moment, however, we do not know whether
corrector function exists.

Exercise 10.41. Show (48), (49), and (50), from the proof of the Representation formula
using Green’s function, Theorem 10.39:

— X

. Y

lim G(z,y)Vu(y) - dy =0,

=0 OB (x,€) |y - :L"

. y—

lim u(y)Vy®(y — ) - y = —u(z),
€20 JaB(x,e) Y ly — |

. @ y—x

lim u(y)Vyo® (y) - dy =

=0 JaB(x,e) Y ly — x|
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§10.18. Symmetry of Green’s functions.

Theorem 10.42 (Symmetry of Green’s functions). Let U C R™ be open and bounded,
with C* boundary OU. Let G be the Green’s function on U. Then

Ve,y € U with x # y G(z,y) = Gy, x).
Proof. Fox x,y € U with & # y. Define
v(z) = G(z,2) = B(z —x) — ¢"(2) and w(z) =Gy, 2) = (z —y) - ¢(2),

where @ is the fundamental solution on R™ and ¢Y is a corrector function. Then Av =
Aw=0in U\ {z,y} and u=v =0 on 9U.

Let ¢ > 0 be such that B(z,¢) U B(y,¢) C U and B(z,¢) N B(y,¢) = 0. Set V. =
U\ (B(z,¢) U B(y,€)). Then?

0= / (vAw — wAv)dz

€

e / (vVw —wVv) - vy, dS(z)
Ve

:—/ (vVw —wVv) - S dS(z)+/ (vVw —wVv) - £ dS(z).
OB(z,€) |Z - i13| OB (y,€) ‘Z - y'
Since, using also Corollary 10.5,
lim W =% dS(z) =0,
€—0 OB (x,€) |Z - :E|
(52) _
lim T v dS(z) = —w(z),
=0 OB (x,€) |Z - .’L'|
then we obtain w(z) = v(y). O

Exercise 10.43. Show (52) in the proof of the Symmetry of Green’s functions, Theo-
rem 10.42:

lim oW - L dsS(z) =0,

€20 JoB(x,¢) |z — 2|

lim WV 2 d8(2) = —w().
€20 JoB(x,¢) |z — =

§10.19. Uniqueness by Energy methods.

Theorem 10.44 (Uniqueness by Energy methods). Let U C R™ be open, bounded and
with C* boundary OU. Fiz f € C°(U) and g € C°(AU). Then there exists at most one
solution u in C%(U) to the boundary value problem

“Au = ;
(53) { u=f inU,
u=g on OU.

Proof. Suppose u1,us € C?(U) are solutions to (53) . Then u = u; —uz € C*(U) is so
that Au =0 in U and v = 0 on QU. Therefore,

0= / uAudx
U

= / div(uVu) dz —/ Vu - Vudz
U U

:/ uVu-yUdS(x)f/ |Vu|? da
U U

(51) ‘/l;(vAw —wAv)dz = ./BU(va —wVo) - vy dS(z).
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:—/ |Vul|? dz.
U

/ |Vul? dz :/ Vu - Vudz
U U
= / (div(uVu) — uAu) dz
U

:/ uVudS(z) = 0.
U

Hence, Vu = 0 in U, that is, since U is connected, u is constant. Since v = 0 on OU, then
u=0inU.

O
Remark 10.45. What is the difference between Theorem 10.44 and Theorem 10.247
§10.20. Dirichlet’s principle.

Theorem 10.46 (Dirichlet’s principle). Let U C R™ be open, bounded and with C*
boundary OU. Fiz f € C°(U) and g € C°(0U).
Define the Dirichlet’s energy functional

B/ C*(0) =R,  Esu) =/(%|Vul2 —uf)da.
U
Define the admissible set
Ay ={uecC*(U):u=g ondU}.
For all uw € C*(U), the following statements are equivalent:
(i) (53) holds, that is,

—Au=f inU,
u=g on OU.
(i) uw € @y and Ey(u) < Ef(w) for all w € o, i.e., u is the (unique) arg-min of Ey
on .

Proof. (i) = (ii): The fact that u € 7, is clear. We need to show that Ef(u) < Ef(w) for
all w € o, If w € o7, then

Ef(u) —Ef(w)

/U ((IVul2/2 - uf) — (Vwl/2 - wf)) da

%/Uuwﬁ— \VwF)dw—/U(u—w)fdx,

where
f/(ufw)fdx:/(ufw)Audx
U U
= / (div((u — w)Vu) — V(u — w) - Vu) da
U
= / (uw —w)Vu - Z/UdS—/ |Vul? dz +/ Vw - Vudz.
U U U
=0 because uw,E g
Therefore,

Ef(u) —Ef(w) = — / (|Vul?/2 + |Vw|*/2 — Vw - Vu) dz
U
= —/ |Vu — Vwl|* dz < 0.
U

Remark 10.47. We see from this calculation that, if Ef(u) = Ef(w), then w = w. This
is indeed the proof of the uniqueness in disguised terms.
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(i) = (i): Fix ¢ € C°(U) and define ¢ty : R — R by
ty(T) :==Ef(u+ 7¢).

Notice that u + 7¢ € o7, for all 7 € R, because ¢ = 0 on OU. If 14 is differentiable at 0,
then L4,(0) = 0. In fact, we have

o(r) = /U (IV(u+76)2/2 - (u+ 7)) da
— /U|v¢| /2dx+T/U(vu.v¢_¢f)dx+/U(|Vu| /2~ uf)da.

S0, t4(7) is polynomial in 7 and it has a minimum at 0 if and only if fU(VwV(b—qﬁf) dz =
0, where

/(Vu~V¢—¢f)dw:/ ¢Vu~l/UdS:0becauseqﬁzOon@U—/(b(f—l—Au)dx
U U U

:—/qu-(f+Au)dx.

We conclude that, if u is as in (ii), then
(54) Vg € C2(U), /qﬁ-(erAu)dx:O.
U

By the Fundamental Theorem of Calculus of Variations 3.6, we (54) is equivalent to
—Au=fonU. O

Remark 10.48. We have not proven yet that the boundary value problem (53) has any
solution at all. Do you have an idea of how to prove it? Think about it.
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11. HEaT EQUATION

For U C R™ open and I C R open interval, e.g., I = (0,400), u € C*(U x I) and
f € C°(U x I), the heat equation is

Ou—Au=0inU x I,
and the nonhomogeneous heat equation is
Oru—Au=finU x I.

In these expressions, d;u is the derivative of u in the direction of I in the product U x I,
while the Laplacian Au = Aju is with respect to the space variable, that is, in the
directions U in U x I. In other words, if (z,t) are the coordinates of U x I, with z € U
and t € I, then

ou " 5%u

(0 — DN)u = Owu — Au = E(m,t) (z,t).

- 9.2
j=1 8xj
We call 9 — A the heat operator. The heat operator 9, — A is a parabolic linear differential

operator of order 2.

§11.1. Example of solutions.

Exercise 11.1. Define
n 1 |z
Y4 R" x (0,400) = R, Yi(z,t) = 72 P — .

Show that (9; — A)y =0 in R™ x (0,4+00). Draw a graph of z — v (z,t) for positive ¢
when n =1 (We will see that this function represents a forward propagation: this is why
we have a plus.) O

Exercise 11.2. Define

. @n _ 1 |z
Y- i R" x (0,400) — R, Y_(z,t) = 2 OXP (Tt .
Show that (0 — A)Y4+ = 0 in R™ x (0,+00). Draw a graph of x — ¢4 (x,t) for positive
t when n = 1. (We will see that this function represents a backward propagation: this is
why we have a minus.) O

§11.2. Symmetries of the heat operator. Let U C R" open, I C R an open interval,
u€ C*(UxI),0€0(n)and b € R", 7 € R, A € R\ {0}. Define i(y,s) = u(A\Oy +
b,A\%s + 7). Then @ € C*(O~*(U — b) x (I — 7)) and

(55) (0s — Ay)a(y, s) = A2 (0ru — Dou)(ANOy + b, A%s + 7).
Exercise 11.3. Show the identity (55). O

Exercise 11.4. Let U C R" open, I C R an open interval, u € C*(U x I), O € 0(n) and
beR" 7 €Rand \,o € R\ {0} Define

(y, s) = u(AOy + b,0s + 7).

Compute (9; — A)@ in terms of (9; — A)u. Determine for which choices of transformations
we have that, if u is a solution to the heat equation, i.e., (9; — A)u = 0, then 4 is also a
solution to the heat equation, i.e., (0; — A)a = 0. O

Exercise 11.5. Show that, if A > 0 and if (§; — A)u = 0, then (§; — A)a = 0, where
Az, t) = u(Axz, A%t). O

§11.3. Fundamental solution for the heat equation. The fundamental solution for
the heat equation is the function ® : R™ x R\ {(0,0)} — [0, 400) defined by

2
Wexp (fl%) for z € R™ and ¢t > 0,

(56) ®(z,t) = {
0 otherwise, i.e., (z,t) € (R™ x (—o00,0]) \ {(0,0)}.



INTRODUCTION TO PDE 35

Exercise 11.6. Find the formula for the fundamental solution for the heat equation by

yourself in the following way: look for ® of the form ®(z,t) = t%v (‘t%‘), or ®(x,t) =

Ly ('t—)f) with (9 — Ag)® = 0 in R” x (0, +00). 0
Lemma 11.7.
(57) / e do = V.
R
Proof. See stackexchange. O

Exercise 11.8. Find a proof (by yourself or in the literature) for (57), that is,
/ e dg = V.
R

0

Proposition 11.9 (Properties of the fundamental solution). The function ® defined
in (56) has the following properties:

(1) ® € C*(R" x R\ {(0,0)}).
(2) for everyt >0 and x € R",

_ 1 22\ = x
qu)(x,t) = —W exp (—?) — = —¢($,t)§,

1 |z|? z* n 1 lz]> =n
[0 = — _— _—— = — =0 —_— —
0®(2,t) = yere EXP( it ) (4t2 2 dnt @)~ %)

r®x Id
4¢2 _ﬂ)‘
(3) (0: — )P =0 i R" xR\ {(0,0)}.
(4) for everyt >0, fRn O(z,t)de =1

Proof. | Proof of 1: | To show that ® is smooth, we proceed as follows. Define

3P(z,t) polynomial with
F=L¢:R" xR\ {(0,00} 5 R: ¢(z,t) = P(x,t~?)exp (—i—f) for t > 0,
while ¢(x,t) =0 for t <0

(]
~

D2®(x,t) = ®(z, 1) (

Then we have the following two facts (whose proof is left as an exercise): First, # C
C°(R™ x R). Second, if ¢ € Z, then %, % ¢ 7, for all j € {1,...,n}. We conclude
that # C C*(R"™ x R\ {(0,0)}). Since ® € .#, we the proof is complete.

‘ Proofs of 2 and 3 ‘ are left as exercise.

Proof of 4: | Fix t > 0. Then we have
|| dzx
P(z,t)dx = — ) —
/R (2,1) da /R e"p( it ) (nt)n/?

T

1 2
=—]=— exp(— d
=57 = m [ exel-luf)ay
1 n
= WH/GXP(*%?) dy;
j=17R

(57) 1.

0

Exercise 11.10. Complete the proof of part 1 in Proposition 11.9. Specifically, define
3P(z,t) polynomial with
F={¢:R" xR\ {(0,0)} = R: ¢(z,t) = P(x,t" /) exp (_%) for t > 0,
while ¢(z,t) =0 for t <0
Then show


https://math.stackexchange.com/questions/154968/is-there-really-no-way-to-integrate-e-x2
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(1) 7 c C°(R" x R).

(2) if ¢ € F, then 6‘%,%—? e Z,forall je{l,...,n}.
Conclude that . C C*°(R™ x R\ {(0,0)}). O
Exercise 11.11. Prove parts 2 and 3 in Proposition 11.9. Specifically, show that for
every t >0 and z € R",

1 )%\ z x
+P(x,t) = ——— ) 2 = (b)),
Va@(@,t) (4mt)n/2 eXp( 4t ) 2t (@ )2t

1 2 (2 _n 1 e
at (xa ) (47Tt)n/2 exp ( At ) ( 42 2 47t (m7 ) 4¢2 2t ’

2 _ r@x Id
D;®(z,t) = O(x,t) ( JvE Qt) ,
where ® is the fundamental solution of the heat operator. Conclude that (0; — Az )® =0

in R” x R\ {(0,0)}. O
§11.4. Solution to the Cauchy problem.
Theorem 11.12. Let g € C°(R™) N L°(R") and define u : R™ x (0,+00) — C as

1 |z — yl?
t) = D(x —y,t dy=—- —— d
u(z, ) /n (z —y,t)g(y)dy (i) 2 /Rn exp ( gy 9(y) dy,
for x € R™ and t > 0, where ® is the fundamental solution for the heat operator (56).
(1) v € C(R"™ x (0,400)) and, for every a € N**1,
(58) Du(e.t) = | D2l - v )gly)dy.
(2) (Or — DN)u =0 in R™ x (0,+00);
(3) for each & € R™,
59 lim  wu(x,t) = g(x).
(59) (2,t)—(,0) (@,t) = 9(x)
zeR™,t>0

In particular, u has a continuous extension u € C°(R™ x [0, +00)) N C*(R™ x (0, +00))
and

Ou—Au=0 inR" x (0,+00),
u=g on R™ x {0}.

Proof. | Proof of 1:

oy 1 |z -yl
K(z,t;y) = Wexp <— 4ty ) 9(y)-

For R > 0 and € > 0, we have, for every € R" with |z| < R and all ¢ > ¢,

ndire  ifBI<R
ey exp (~UHER) it fy] > R

Since hg € L'(R™), satisfy the conditions of Theorem (3.3.2), so u € C°(B(0,R) x
(€,+00)). Since this holds for every R > 0 and ¢ > 0, we conclude v € C*(R" x (0, +00)).
To prove the smoothness of u, one uses the same strategy as in the proof of Proposi-
tion 11.9.1; see Exercise 11.13. Also (58) follows from Proposition 11.9.

Proof of 2: | From (58), we have

(@ — A)u(z, t) = / (& — £2)B(x — y, t)g(y) dy = 0,

n

[K(z,ty)] < hr.e(y) =

because (0; — Az)®(x —y,t) = 0 for every y € R™ and ¢ > 0, thanks to Proposition 11.9.3.

Proof of 3: | Fix £ € R™ and € > 0. Since g is continuous, there exists é > 0 such that

lg(y) — g(&)| < € for all y € B(z, ).

ute.0) = 9@ = | [ 0= 09y - 960) [ ate -0
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IN

Il
T

O(z —y,t)|g(y) — g(2)|dy

n

O(x —y,t)|g(y) — g(2)| dy
————

<e

+ / Bz — . 0)lg() — 9(&)|dy
R\ B(#,5)

(#,6)

= / Pz —y, 1) dy+ / ®(z — y,1)|gly) — 9(&)| dy.

R™\ B(%,9)
—_—
=1 =:J5(x)

If z € B(&,6/2), then, for all y € R™ \ B(&,9),
(60)  Jy—z[=ly—d[ |-z >y -2 -0/2> |y -2 -y —2]/2= |y - 2|/2.
Hence, if x € B(%,4),

_lz—yl?

exp(—“5—)
Js(z) < 2||g Loo/ — At
@) Il Re\B(3,5) (4mt)"/2

ly—2|?
(?) 2||gll Lo / exp(— g )dy
Rn\ B(&,5)

dy

— (47T)n/2 tn/2
y—2&, _ 2[gllz= |2[?
[z="—]< exp( )dy.
Vit (4m)"/2 Jrn\ B(2,6/v/%) 16

=:E(6,t)

Since § > 0 and since the integrand in E(d, ¢) is integrable over R™, then lim,_,,+ E(d,t) =
0. Therefore, there exists 7 > 0 such that E(4,t) < € for all ¢ € (0,7). All in all, we
conclude that

(61) Ve > 034, 7 > 0Vx € B(z,6/2) Vt € (0,7) lu(z,t) — g(2)] < e+ %Z'l'iglfl; €.
(61) is (59). m
Exercise 11.13. Show part 1 in Theorem 11.12. O

§11.5. Approximation of the identity. From the proof of Theorem 11.12, we can
extract the following lemma:

Lemma 11.14. Let T > 0 and g € C°(R™ x [0,T]) N L= (R™ x [0,T]). Then, for every

T e R",
(62) lim / D(z,t)g(x — z,t)dz = g(&,0).
(@)= (2,0) Jgn
>0
Exercise 11.15. Prove Lemma 11.14. O

Proof. Define
u(z,t) = / D(z,t)g(x — z,t)dz = / O(x — z,t)g(z,t) dz.
R"L RVL

Fix & € R™ and € > 0. Since g is continuous, there exists § > 0 such that |g(y, t)—g(Z,0)| <
e for all y € B(&,6) and all ¢t € [0,]. Then

/Rn Q(z —y,t)g(y, 1) dy — g(2, 0)/

R™

lu(z, t) — g(2,0) =

‘1)(,1,‘ - Y t) dy‘
< [ @ u.0lgut) - 9(2.0)|dy

- / B —y,8) [g(y,0) — 9(&,0)] dy
B(2,6) e e ——

<e

+ / B — y, Dlg(y.1) — 9, 0)] dy
R"\ B(%,5)
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Se/ @(w—y,t>dy+/ B — y,8)|g(y. 1) — 9(#,0)| dy.
R™ R\ B(%,6)

=1 =:J5(x)
If z € B(&,6/2), then, for all y € R™ \ B(&,9),
63)  ly—zlzly—2—|2-al=y—2[-0/2=|y—2[—|y—2]/2=|y - 2[/2.
Hence, if z € B(%,5/2),
_lz—yl?

exp(—5/-)
Js(z) < 2|g Loc/ &P
@) lol R™\ B(%,5) (4mt)n/2

a2
@) 2]|g]l = / ()
= (4Am)™2 Jgn\pa.s) tn/2
y—=2,  2||gllze= Els
[z = === exp(———)dy.
Vit (4m)"/2 Jon\ B(2.5/vE)

16
—E(5,t)

dy

Since § > 0 and since the integrand in E(d, ¢) is integrable over R™, then lim,_,,+ E(d,t) =
0. Therefore, there exists 7 € (0,8) such that E(d,t) < € for all ¢ € (0,7). All in all, we
conclude that

2 o
(64) Ve> 036, 7 > 0Vz € B(%,6/2) Vt € (0,7) lu(z,t) — g(2,0)| < e+ %e.
T n

(64) is (62). O
§11.6. Solution to the nonhomogeneous Cauchy problem. A solution for the non-
homogeneous Cauchy problem (66) is constructed as follows. For every s > 0 let us be
the solution constructed in the previous Theorem for the Cauchy problem

Orus — Aus =0  in R™ X (s,4+00),

us = f(+, 9) on R" x {s}.

So, us(z,t) = [o. ®(x — y,t — 5)f(y,s)dy. Then, we set u(z,t) = [

o us(z,t)ds, that
is, (65). This strategy is called Duhamel’s principle.

Theorem 11.16 (Solution to the nonhomogeneous Cauchy problem). Let f € CZ(R™ x
[0,+00)) and define u : R™ x (0,+00) = R by

u(x,t) :/0 /]R“ O(x —y,t—s)f(y,s)dyds
t 1

[ g Lo () s ava

Then the following holds:
(1) u € CHH(R™ x (0,400));
(2) (0 — DN)u = f in R™ x (0,4+00);
(3) for every & € R",

(65)

lim  wu(z,t) =0.
(z,t)—(2,0)
zeR™,t>0

In particular, u has a continuous extension u € C°(R™ x [0, +00)) N C*(R™ x (0, +00))

and

(66) Ou—LAu=f inR" x(0,400),
u=0 on R™ x {0}.

Proof. First, notice that the integrand in the definition (65) of u is integrable

and thus u is well defined. Moreover,

u(x,t) = /Ot /” D(z,7)f(x — z,t —r)dzdr.
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Define

K(x,t;2,7) := ®(z,7) f(x — z,t = 1r)Ljo,4(r).

Then |K(z,t;z,7)] < [|fllLe®(z,7) for all (z,t),(z,r) € R" x R\ {(0,0)}. So, we can
apply Theorem 3.3.

Proof of 2. | With the support of Theorem 3.3, we can compute, for x € R™, ¢t > 0,
and a € N" with |a| < 2,

¢
Ou(z,t) = / O(z,t)f(x —2,0)dz +/ / O(z,7)0 f(x — z,t —r)dzdr,
n 0 n
t
D%u(z,y) = / / D(z,7)D*f(z — z,t —r)dzdr.
0 R”L
Therefore, for x € R, ¢t > 0 and € € (0, t),

0y — D)u(z,t) = / D(z,t)f(z —2,0)dz

+/0t/n (2, 7) (0 — N f(x — 2zt —r)dzdr
:/" (2, 1) f(x — 2,0)dz

=Je
t
+/ / D(z,7)(0r — A)f(x — z,t —7)dzdr.

=1,

Now,
9 < 0uflim + 107 a) [ [ (e dzar
o Jrn
= c([|0:fllLos + D fll ).
Next,
t
I. = D(z,1)(0r — Dg) f(x — z,t — r)dzdr

I
= /: /R ®(z,7) (=0, — A2) f(x — 2z, t —7)dzdr
/6 /R (=0r(@(2,7) f(x — 2,t = 7)) + 0r®(2,7) f(w — 2,t — 7)) dzdr

_ /t / div, (@(z,r)vzf(z —z,t—1) = V., ®(z,7)f(x — 2,t — T)) dzdr

f/t AD(z,r)f(x — z,t —r))dzdr
€ R™

=) —K+/ O(z,€)f(x — 2,t —€)dzdr,
R™

where we used in (x) the fact that ® solves the homogeneous heat equation and that f
has compact support. So, we conclude that

0y — D)u(z,t) = lirr(l) D(z,€)f(x — z,t —e)dzdr
e=0 Jpn

[Lemma 11.14] = f(z,t).

Proof of 3. | We easily conclude with the following estimate:
t
w0l < Ifl [ [ - ut-s)dyds
0 n
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(z,1)

Ficure 2. The shape of the set E(z,t;7) defined in §11.7.

[by 11.9.4] = || f||oot.

§11.7. Mean-value formula. For (z,¢) € R™ X R and r > 0, define
E(z,t;r) ={(y,s) eR" xR:s<t, ®(x—y,t—s)> ri"}
= (I,t) + E(0,0, T) = (x? t) + 57‘(E(07 07 1))3

where 8,(y,s) = (ry,r*s). Notice that E(0,0;1) = {(y,s) : ®(—y, —s) > 1}. See Fig-
ure §11.7 for a drawing of the shape of E(z,t;r). Since

n/2 2
P(-y,—s) =21« Umls)™ (ol >1
exp 4|s|

2
< WP
A4

. glog(47r|s|)

1
@ <8< 0 ly|> < —2n]s| log(47|s]).

Theorem 11.17. Let Q C R™ x R be open and u € C%'(Q) such that (0: — A)u = 0 in
Q. Then, for all (z,t) € Q and r > 0 such that E(x,t;r) C Q, we have

_ 1 |z — yl?
u(z,t) = s //E(M;T) u(y, s) T =) dyds.

Proof. See [5, pag.53]. O

§11.8. Strong maximum and minimum principles. For U C R" and T > 0, define:
(1) the closed parabolic cylinder Ur := U x [0,T];
(2) the parabolic interior Ur := U x (0,T] (notice that T is included);
(3) the parabolic boundary T := Ur \ Ur = (U x {0}) U (8U x [0,T)).

Theorem 11.18 (Strozlg maximum principle). Let U C R™ be open and bounded. Let
u € CFY(Ur;R) N C°(Ur;R) be a real-valued function such that (9 — A)u = 0 in Ur.
Then
(67) maxu = maxu.

Ur I'r
Proof. (From Folland [7, Thm 4.16]). In (67), the inequality maxg,_, v > maxp, u is clear.
We need to show maxg,, u < maxr; u.

Let € > 0 and define v.(z,t) = u(x,t) + €|z|>. Let 7" € (0,T). We claim that

(68) max ve = max Ue.
U ja
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First of all, notice that, in Ur,
(69) Ove — Ave = dyu — Au — eN(|z]?) = —2en > 0.
Suppose that (x,t) € Uz is a point of maximum for v. on Uzs. Then Ave(z,t) < 0 and
Oyve > 0. However, this is in contradiction with (69). We conclude that (68) must hold.
To prove the statement about u, we see that
max u < max ve
T T
(69)
=’ maxv.
T
< maxu + e max |z|*.
Ty Upr
Since U is bounded, then maxp,_, |z|> < co. So, letting ¢ — 0, we obtain the desired
inequality. O

Exercise 11.19. Show the following statement: Let U C R™ be open, bounded and con-
nected, T > 0, and u € CHY(Ur;R) N C°(Ur;R) such that (0; — A)u =0 in Up. If there
exists (z,t) € Ur such that u(z,t) = maxg,, u, then u is constant on Uy.

[This exercise turned out to be more difficult than I expected: It is proven by Evans
using the mean value formula from Theorem 11.17.] O

Exercise 11.20. Prove the strong minimum principle for the heat operator. %

Exercise 11.21. Prove the strong maximum principle for the heat operator using the
mean-value property; see [5]. o

§11.9. Uniqueness on bounded domains.

Theorem 11.22 (Uniqueness on bounded domains). Suppose U C R™ is open and
bounded, and T > 0. Let g € QO(FT) and f € C(Ur). Then there exist not two dis-
tinct solutions in C*'(Ur) N C(Ur) to the boundary value problem

{(81—A)u—f in Ur,

70
(70) u=g on I'r.

Proof. Let ui,u2 € 02;1(UT) N C(UT) be two solutions to (70). Then u = u; —u2 €
C*Y(Ur) N C(Ur) satisfies (0; — A)u = 0 in Ur and u = 0 on I'r. By the strong
maximum and minimum principles, see §11.8, both the real and the imaginary parts of
u are zero on Ur, i.e., u1 = us. O

§11.10. Maximum and minimum principles for the unbounded Cauchy prob-
lem.

Theorem 11.23 (Maximum principle for the unbounded U). Let T" > 0. Let u €
C*H(R™ x (0, T];R)NC°(R™ x [0, T];R) be a real-valued function such that (0y — A)u =0
in R™ x (0,T]. Suppose also that there are A,a > 0 such that

(71) u(z,t) < Aexp(alz|®).
Then

max u = maxu(-,0).
R™ % [0,T] R™

Proof. Let 0 < b < T be such that

1 . 1
4—b—a>0, 1.e.,0<b<E.
We will show that
(72) Vs, t € [0,T] with 0 <t —s <b, sup u(z,t) < sup u(z,s).

T ER™ reR™

Since both (71) and the heat equation are invariant under time translations (see §11.2),
we can prove (72) for s = 0 without loss of generality.
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Set g € C°(R™) by g(x) = u(x,0). Fix § € R™ and i € (0,b): we need to show that
(73) w(g, ) < llgll Lo @n)-
For p > 0, define, for x € R™ and t € (0,b),

B w |$ - Q|2
v(z,t) = u(z,t) — R exp (4(() — t)) :

So, we have v € C*H(R™ x (0,b); R) N C°(R™ x [0,b); R) and (8, — A)v = 0 in R™ x (0,b);
see §11.1.
We claim that there exists r > 0 such that

(74) sup v < lgllzee.
B(3,r) x[0.6)

By the strong maximum principle, Theorem 11.18, for every r» > 0, we have

sup v =sup {v(a: t: °¢ B(g,r) and ¢ =0, or }
B3 X [0,0) " 2z € 0B(g,r) and t € [0,b) [

If |z — g| < r, then v(z,0) = u(z,0) —
and t € [0,b), then
2
v(z,t) = u(x,t) — o _/i)n/2 exp (4(1) — t))

7"2
< Aexp(alz|®) - bn%eXp (477)

2
m r
pn/z P (@)
2 1 r? 2
= exp(a(|g] +7)°) <A ~ Gz OXP (@ —a(lg] +7) >) =:J,.

Since lim, o Jr = —00, we can choose r large enough that the J, < ||g||z>. We conclude
that, for r large enough, (74) holds.
In particular, from (74) we obtain that, for every pu > 0,

o u =
(75) u(g,t) — (EORE =v(9,t) < lgllLee.

Taking the limit g — 0 in (75), we conclude (73). O

z—7|2 ~
st exp (E522) < g(@) < gl 1w —g] =7

< Aexp(a(lgl +7)*) —

Exercise 11.24. State and prove the strong minimum principle for the unbounded
Cauchy problem. O

§11.11. Uniqueness for the unbounded Cauchy problem.

Theorem 11.25 (Uniqueness for the unbounded Cauchy problem). Let T > 0, g €
C°(R™) and f € C°(R™ x [0,T7]). Set

_ 21 pn 0 /pn . JA,a > 0 s.t.
(76) o = {u eCT(R" x (0, T)NnC"(R" x [0,T]) : lu(z, 1)] < Aexp(alz|?) }

There does not exist two solutions in &/ of
(77) (0 —N)u=f R x(0,T],
u=g on R™ x {0}.
Proof. If ui,us € o solve (77), then v = u1 — uz € & is such that (9 — A)u = 0 in

R™ x (0,7] and w = 0 for ¢ = 0. By the maximum and minimum principles §11.10,
u = 0. O

Remark 11.26. The growth condition (71) is necessary: there are counter-examples. See
[10, chapter 7].

Remark 11.27. Notice that in the definition of & in (76), we require the growth con-
dition (71) both as an upper bound and as a lower bound. You should have noticed this
already in Exercise 11.24.
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§11.12. Smoothness. The following blue part contains mistakes, so it is dropped from
the content of the course. I keep it here for future memory: with a bit of work, we should
be able to fix it. Notice that we have other methods to prove that solutions to the heat
equation are smooth...

TODO: Fix proof of Lemma 11.28 .
Lemma 11.28. For (z,t) € R™ X R and r > 0, define

C(x,t;r) = B(z,r) x [t —r°,t] CR™ x R.
Let Q@ C R™ x R open. Fiz (2,%) € Q and # > 0 such that C := C(&,{;7) C Q. Define
R -1

C’ = C(z, % %f) and C" = C(2,t; = 3 7).

Let ¢ € CF(R™ x (—o0,1]) be such that C' C {¢ = 1} and spt(¢) C C.

Then, for every u € C*1(Q) and all (x,t) € C”,

aert) = [ [ (90—t 900 8) + ByCla: ) + 20,800 — 1t ID,G(05) ) -l s) s
+ /Ot /n D(x —y,t—s)((y,s) (8su(y, s) — Ayuly, s)) dy ds.

@,

C//

Rn
Proof. Assume £ > # > 0. Define v := ¢ -u € CZ'(R"™ x (—o0,1]) and compute
fi=(0—DA)v= (8 — A)C-u+ (8 — A)yu —2DC - Du.
Set then

O(z,t) = /Ot /” O(x —y,t — s)f(y,s) dyds.

By the definition of f and by (65), both v and ¥ are solutions to the Cauchy problem
(0 —A)v = fin R™ x (0,), with v = 0 on R™ x {0}. Moreover, we have both ||v||ze < oo
and || f|p~ < oo. Therefore, |0(x,t)] < ¢||f||re. From Theorem 11.25, it follows that
v =17.

Since (z, t) € C", then ((z,t) = 1 and

u(z,t) = Ju(z,t) = v(z,t) = v(z,t)

/ / . w—y,t—s>(<6— D<) - uly, s) +C(y, 5) - (B — A,)uly, s)

—2D((y, s) - Du(y, 8)) dy ds.

Moreover,

/t/ ®(z —y,t —s)D(-Dudyds = /t/ (divy(@(w—y7t—8)DC(y,8)u(y78))
0 JRn 0 JB(&,7)
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- qu)(x -y, t— S)DC(:% S)U(y, S)

*¢@*yifﬁwu@ﬂd%@)®d&

where, for all s < t,
[ divy (@~ y.t = DCyuly,s) dy = 0.
B(2,7)
O

Theorem 11.29 (Smoothness of solutions to the homogeneous heat equation). Let @ C
R™ x R be open and u € C*1(Q) such that (9 — A)u =0 in Q. Then u € C*(Q).

Proof. By the Lemma 11.28, we have for (z,t) € C”

u(z,t) / K(z,t;y, s)u(y, s)dyds,

where, for (z,t) € C", K(z,t;-) € C*®(C). TRUE? Therefore, u is smooth on C” by
Theorem 3.3, or Proposition 3.5. -> C” is not open! O

Theorem 11.30 (Quantitative smoothness). Let  C R™ X R be an open set. For every
a € N", L €N, there exists Coe € R such that, for every u € C(Q2) with (0y — A)u =0
mn Q, if C(z,t;7) C Q, then

(78)

a 4
0 “l LHUHU o
Ora ate rlal+20+n+2 (C(z,t;r)) "

p
C(z,t;r/2)

Proof. From Lemma 11.28 we get that, if u € C*°(C(0,0;1)), then, for every (z,t) €

C(0,0;1/2),
u(z,t) = // K(z,ty, s)uly, s) dy ds,
C(0,0;1)

where K € C*(C(0,0;1/2) x C(0,0;1)). By Proposition 3.5, or Theorem 3.3, for every
(z,t) € C(0,0;1/2) we have

thu x,t) // Dy K (z,t;y, s)u(y, s) dy ds.
C(0,0;1)

Hence, if we take as constants
Ca,e = sup{|DY K (z,t;,5)| : (x,1) € C(0,0;1/2), (y,s) € C(0,0;1)},

we obtain (78) in this specific case.
In the general case, if (&,f) € Q and # > 0 are such that C(&,¢;7) C Q, and if
u € C*(Q) is such that (9; — A)u =0 in Q, then the function

Az, t) = u(d + fa, i + 77t
is such that (9; — A)u = 0 in C(0,0;1). Therefore, for every (z,t) € C(0,0;1/2),
DY (@ + o, 4+ 7#24) 7172 = DY a(w, t)]

< Cay // a(y, s)dyds
€(0,031)

=Coy // u(i + fy, L+ 7#%s) dy ds
€(0,031)

_ dy ds
_Caf// Y,s T‘n 2
C(actr)

Hence, we conclude with (78). O

Remark 11.31. Notice that this smoothness result tells us that time cannot be inverted!
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§11.13. Energy Methods.

Lemma 11.32. Let U C R" open and bounded with C* boundary U, and let T > 0. For
w:Up — C define e, : [0,T] = R,

n:Lm@@F&,

whenever it is well defined. If u € C*Y(Ur) is such that (3y — A)u = 0 in Ur, then
ew € CH([0,T)) and

éu(t) = 2/ uDu - vy dS — 2/ |Dul? dz.
U U
If u=0 on U x [0,T], then é.(t) <0 and so, e; is decreasing.

Proof. Since U is bounded and v is continuous on U, then |[u|| ;o (g, < co. Since U is
bounded, then constants belong to L?(U). Therefore, by Theorem 3.3, e, € C*((0,T))
and

éu(t) = QV/U(‘9,gu(x,:‘,)u(az’7 t)dx
= 2/U Au(z, t)u(z,t) dz

= Q/aU Du(z,t) - vy (z) dS(z) — Z/U |Du(z,t)|” de.
]

Theorem 11.33 (Uniqueness by Energy methods). Let T > 0 and U C R"™ be an open,
bounded subset with C* boundary OU. Let f € C°(Ur) and g € C°(T'7). Then there do
not exist two distinct solutions in C*1(Ur) to

{@—Am:f in Ur,

79
(79) u=g on I'r.

Proof. Suppose there are two solutions u1,uz € C*Y(Ur) to (79). Then w = uy — uz €
C*Y(Ur) solves (79) with f = 0 and g = 0. By Lemma 11.32, 0 = e4,(0) > ew(t) =
I |w(z,t)|? dz > 0 for all ¢ > 0. Tt follows that w = 0 and thus u1 = ua. O

§11.14. Backward uniqueness.

Theorem 11.34 (Backward uniqueness). Let T > 0 and U C R" be an open, bounded
subset with C* boundary OU. Let g € C°(AU x [0, T)). Suppose that u1,us € C*(Ur) solve
the Cauchy problem

(80) {(8,5 —MNu=0 nUr,

u=g on OU x [0,T].
If ui(x,T) = u2(x,T) for all x € U, then u1 = uz in Ur.

Proof. Take w =u; —us € C2(UT which solves (80) with g = 0. By the Lemma 11.32,
/ lw(z, t)|* de;
t) = 2/ |Dw(z, t)|? da;
U
Ew(t)=1[.]= 4/ |Aw(m,t)|2dx.
U

Moreover, using the Holder inequality,

/U|Dw(m,t)| dz:/UDw(x,t)-Dw(x,t)d:r

—/ Aw(z,t) - w(z,t)dx
U
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< (/U|Aw(x7t)|2dx)l/2~ (/U |w(m,t)dm)1/2.

w(t)? < Ew(t) - ewl(t).
Suppose that e, is not zero on [0,7T]. Let (a,b) C [0,T] be a maximal interval where
ew > 0. Then e, (a) = 0. By Lemma 11.35, for all [t1,t2] C (a,b),

ew(1/2t +1/2t5) < ew(t) ?ew(t2)"/?.
a+b

Hence,

Taking the limit to t1 — a and t2 — b we obtain e ( ) = 0, in contradiction with

ew > 0 on (a,b). We conclude that e,, = 0 on [0,T]. O

Lemma 11.35. Let I C R be an interval and e : I — (0,+00) be a C* function with
¢ < deé. Then, for every t1 < ta belonging to I, and every T € (0,1),

(81) e((1 —7)ty 4+ 7t2) < e(t1)'  Te(ta)”.
Proof. Set f(t) = log(e(t)), which is well defined because e(t) > 0. Then f'(¢) = ZEQ and
7 1 . .2 e(t) —ée + ée
= = > _ 17,
PO =) + 2 2 —a 0

Therefore f is convex. From the convexity of f, we get (81). O
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12. WAVE EQUATION

§12.1. The wave operator. Let U C R" open and I C R an open interval. For w :
U xI— C, we call

e the (homogeneous) wave equation ‘227;‘ —Au=0inU x I;
2
e the nonhomogeneous wave equation %—Au = finUXxI, for some f : UxI — C.
A common abbreviation is to denote the wave operator by
Ow = 87 — A.

§12.2. Symmetries of [J. The wave operator [J is a linear homogeneous hyperbolic
differential operator of order 2.

Define v(z,t) = u(Az + a, Bt +b) with A € GL(n), a € R", B,b € R with AAT = X\?Id.
Then

Ov = (B*87u — N> Au)(Az + a, Bt + b)
[If B> = %] = A’0Ou(Az + a, Bt +b).

Exercise 12.1. Compute Ou for u(z,t) = exp((a + bi) -  + ¢t), where a,b € R" and
¢ cR. O

Exercise 12.2. Show that [J is invariant under the Lorentz group of transformations.
Recall that the Lorentz group is the group of linear automorphisms of the Minkowski
space. More explicitely, if M is the (n + 1) x (n 4+ 1) matrix

Id 0
= 5)

then the Minkowski space is (R" x R, M) and the Lorentz group is made of matrices
A € GL(R™ x R) such that ATMA = M.
Hint. If it seems too hard, try to solve the exercise at leas for n = 1. %

§12.3. Examples. For a,b € C, consider the following functions uq, : R x R = C,
Ugp(x,t) = exp(ax + bt),

Exercise 12.3. For which a,b € C we have Uug p = 07
Hint: a =b or a = —b. %

Exercise 12.4. For which a,b € C we have uq; 1-periodic (i.e., a,(0) = uq,5(1)) and
Dua’b = 0?
Hint: a,b € 2miZ with a = b or a = —b. O

Exercise 12.5. For every k € Nand ¢ > 0, find u : [0,¢] Xx R — R such that
(1) Ou=0,
(2) u(0,t) = u(£,t) =0 for all ¢, and
(3) there are 0 < zg < z1 < -+ < % < £ such that u(z;,t) =0 for all j and all ¢.

These functions are the Harmonics of the string pinched at the two ends. O
Exercise 12.6. Let ¢ € C. Find u : R™ x R — C such that

Ou = cu.

§12.4. Finite propagation speed.

Theorem 12.7 (Finite propagation speed). Let U C R"™ be open, & € U and R > 0.
Define

K(#,R) = {(z,t) € R" x [0, R] : |z| < R}.

Suppose B(2, R) C U and that u € C*(U x [0, R]) is such that Ou =0 in U x (0, R), and
u=0w =0 onUx{0}. Then u=0 in K(Z,R).
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Proof. Fix t > 0, define

Bt =1 / (1Beu(z, B)? + [Du(z, 1)) da.
2 /B@,r-1)

Then, if t € (0, R),
4

1
O E(t) > T

( / (v, ) + [Dau(a, ) de
h=0 \JB(&,R—t—h)

(|0cu(z, t + h)|* 4 |Dyu(z, t + h)[*) dx)
B(&,R—1)

N =

+ o~ o+

= [ (00 + Dotz ) dS()
OB(z,R—t)

/ (28tu8t2u + 2DuDdu) dx)
B(&R—t)

2 2
= / (- [eu” _ [Dul + OyuDu - 1/> dS(x)
8B(&,R—t) 2 2

</ (Ivu] - [Dul)?dS <0,
OB(z,R—t)

where we have used in (x) that
(160l — [Dul)?® = [Bvuf? + [Duf? — 2/l - Dl < |Beul? + [Dul? — 2/dvu] - Du - o],

because |v| = 1. It follows that 0 < E(t) < E(0) = 0. So, u is constant in K (&, R). O

Remark 12.8. Notice that we actually only need u constant in B(Z, R) at time 0 to
obtain that u is constant in K(z, R).

Exercise 12.9. Let £ € R" and R > 0. Prove the following uniqueness result: if ui,u2 €
C*(K (%, R)) are such that Ou; = Ous in K(#, R) and u1 = u2 on K (2, R) NR™ x {0},
then u; = ua. O

§12.5. Uniqueness of solution to the wave equation.

Theorem 12.10 (Uniqueness of solution to the wave equation). Let U C R™ be an open
set with C* boundary OU, and fix T > 0. Let f € C°(Ur), g € C°(I'r), and h € C°(U).
Then there is at most one solution in C?(Ur) to

Ou=f inUr,
(82) u=g onI'r,
du=h onU x{0}.

Proof. As usual, if u1,us € C*(U x [0,T]) solve (82), then their difference w = uz — u1
solve the same problem with f =0, g =0, and h = 0. Define

E(t) = / (Dvw(z,t)* + |Vw(z,t)|*) dz.
U
Then
E'(t) = / (20,wd; w 4 2VwVdw) dz
U

:2/ (9tw6t2w+
U
=0,

OrwVw - vy dS(z) — / Awoyw dx
ouU U

because d;w = Oon U for all ¢ (because w = 0 on AU x [0,T]), and because Ofw = Aw
on U x (0,T). Therefore, E is constant. Since E(0) = 0, then E = 0. It follows that w is
constant, and thus 0 since w = 0 on U x {0}. O
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§12.6. Solution by spherical means: case n = 1, d’Alambert’s formula. We
consider the case n = 1. We will solve the PDE

{Du—O in R x (0, 400),

83
(83) u=g, u=h onR x {0},

with g and h given functions R — C. Before we give the full statement that we can prove
at the moment, we will see how to find such a formula. So, we forget about the regularity
of u, or, in other words, we assume that u is C*° (or C?, which is enough to justify our
reasoning).

First, we notice that we can rewrite (83) as

(at + 81)((975 — Bz)u = 0.
Therefore, if v = dyu — dzu, then v solves the transport equation (25) (with b = 1):

v+ 0;v=0 inR x (0,+00),
v=h—g on R x {0}.

If w is C?, then v is C' and we know that
v(z,t) =v(x —t,0) = h(z —t) — g (x — ).

Next, u solves dyu — Ozu = v in R X (0,+00). By the solution to the nonhomogeneous
transport equation given by Theorem 9.1 (with b = —1 and f = v), we have

u(z,t) = u(z +¢t,0) —l—/D v(ix — (r—t),r)dr

g+ 0+ [ (o —r+t=r)—g -+ t=r)ar

t

:g(x+t+wo+/oth(x+t72r)dr
1 ot dr
F=x —2r] = =(g(z x—1)) — h(7)—
F=att-21= 0@+ toa-0)- [ a0G
x4+t
= %(g(a:—!—t) +g(x—1t)+ %/71 h(r)dr.

We thus obtain D’Alambert’s formula

x+t
(84) uuiﬁzaﬁz+ﬂ+g@—ﬂ)+%/;tMﬂdr

Theorem 12.11 (Solution to 0 = 0 for n = 1). Let g € C*(R) and h € C*(R). Define
u:R X R — C by D’Alambert’s formula (84). Then

(1) u € C*[R x R);
(2) 0fu— 0%u=0u=0 in R x R;
(3) for every & € R, u(,0) = g(£) and dyu(&,0) = h(z).

Moreover, u is the only solution to (83).
Proof. The proof is left as an exercise. Uniqueness is given by Theorem 12.10. O

Exercise 12.12. Prove Theorem 12.11. O

Exercise 12.13. Try to solve the nonhomogeneous version of (83), that is,

Ou=f in R x (0,400),
u=g, dhu=h onR x {0},

for some given f. 0
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Remark 12.14. Solutions to the wave equation given by D’Alambert’s formula (84) are
of the form

u(z,t) = Fx +t) + Gz — t),

with F, G € C*(R). The two functions represent a forward-moving wave and a backward-
moving wave. Can you say which is which?

Remark 12.15. The solutions we have found with D’Alambert’s formula (84) extend to
negative time!

Remark 12.16. The solutions we have found with D’Alambert’s formula (84) are not
C* smooth if g and h are not C'*°. This is different from the other equations we have
studied so far. Can you spot the difference in the equation? In fact, the highest order
part in the Laplace and in the heat equations is the laplacian, while here the whole O is
homogeneous of order 2.

Remark 12.17. For n > 1, we can define @(z,t) = u(z1,t), where u is a solution in
dimension 1 to the wave equation. It follows that 4 is a solution to the wave equation in
R™ x R. Therefore, we have found non-smooth solutions to Cu = 0 in all dimensions!

§12.7. A Reflexion method: solution on the half-line. We want to solve the PDE

Ou=0 in Ry x (0, 4+00),
(85) u(z,0) = g(x), dwu(x,0) = h(z) Vo e Ry,
w(0,t) =0 Vvt > 0.

This PDE represent a vibrating string that is pinched at one end and infinite in the other
direction. A solution is given in the following Theorem 12.18, whose proof is a direct
calculation. The formula (86) is obtained by a reflection method, that is, we extend the
problem (85) to a PDE on the whole line R by taking

~ ~ Ju(z, 1) ifz >0,
i) = {u(m,t) if £ <0;
)

N ¢ if x>0,
oo = {—g(—m if o < 0;
() = {h(]f) a0,

—h(—z) ifz<O0.

Then one can convince themselves that @ solves the 1D wave equation and thus, we can
take @ as given from the D’Alambert’s formula (84). From there, we can obtain (86).

Theorem 12.18. Let Ry = (0,4+00). Let g € C*(R4) and h € C(Ry) be such that
g(0) = h(0) = ¢"(0) = 0. The function u : Ry x [0, +00) — C,

{1<g<x+t>+g<xt>>+; “hiy)dy  if0<t<u,
u(z,t) = x

s+t —gle—t)+5 [0 hy)dy Ffo<a<t,

(86)

=N

belongs to C*(R4 x (0, +00)) N C° (R4 x [0,+00)) and it is THE solution to

Ou=0 in Ry x (0, 400),
(87) u(z,0) = g(z), Owu(z,0) = h(z) Vo e R4,
u(0,t) =0 vt > 0.
Proof. Left as an exercise. Uniqueness is given by Theorem 12.10.
Hint. The assumption g”(0) = 0 implies that § is C?. O
Exercise 12.19. Prove Theorem 12.18. O

Exercise 12.20. For F,G € C*(R), define @(z,t) = F(x +t) + G(x — t). Then we know
that Ou, see Remark 12.14. For which F' and G we have @(0,t) = 0 for all ¢t? Solve (87)
finding the correct F' and G. 0
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Exercise 12.21. Solve the string problem

Ou=0 in [0,1] x (0, 400),
u(z,0) = g(x), Oru(x,0) =h(x) Vze]|0,1],
u(0,t) =u(1,t) =0 vt > 0.

You need to find some conditions on ¢ and h to make u of class C?: it is part of the
exercise.

Next, for every n € N, find u, € C?([0,1] x R) such that Ou,, = 0 and u,(k/n,t) = 0
for all k € {1,...,n}. These functions u,, are called harmonics of the string. O

§12.8. Spherical means: Euler—Poisson—Darboux equation.

Lemma 12.22 (Euler—Poisson-Darboux equation). Let n > 2, m > 2, u € C™(R" x
[0,+0)), g,h € C™(R"™). Suppose

(88) O2u— Au=0 in R™ x (0, 4+00),
u=g, du=h onR" x {0}.

Referring to 6, set U(z;r,t) = ¥u(t,z;7), Gz;r) := Yg(z,7), H(z;7) = tn(x;7). Here
.y is defined in (16). Then U(xz;-) € C™([0, +00) X [0,400)) and

{a?U — U - 2=19,U =0 in (0,400) x (0,400),

(89) U=G, o.U=H on (0,+00) x {0}.

Proof. The regularity of all functions U, G and H is proven in Lemma 6.1. To show (89),
we just need to perform the following computations, using again Lemma 6.1.

Oty (z, t57) = %gfmu(x,t; r)
<8:8) %¢a§11($»t§7")
= %8?¢u($7t§r)7
5 IR P T 2 (T _
8r¢u(137t,7") = Eat Pu + Eat (;(wu ¢u))

1—

n
= O+ (Zomen)
n r
= 0P+ "Dy
d
§12.9. Solution by spherical means: case n = 3. Here we show how to obtain

Kirchhoff’s formula (90), where we can assume s = 0 without loss of generality by §12.2.
So, let u € C*(R? x [0, +00)) be such that (94) holds, that is
Ofu—Au=0 inR? x (0,+00),
u=g, dwu=h onR>x{0}.
Define U, G and H as in Lemma 12.22 and then set

U(x;r,t) =rU(z;m,t), G(z;r) =rG(z; 1), H(x;r) =rH(x;r).
Then a direct computation shows that, for each z € R?,
02U — 820U =0 for r,t >0
ﬁ(m;r, 0) = é(m, ), 6tU(x; r,0) = fl(m;r) for r > 0.

So, for each = € R3, the function U(z; -, -) solves the pinched string problem §12.7. Since
the solution to the pinched string problem §12.7 is the only one, we obtain, for r € (0,t),

- - T+t
U(w;r,t):%(G(x;r—&—t)—G(m;t—T))—F%/ H(x;s)ds.
—r+t
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So,
w(e,) = lim Ui, 1) = lim 200
r—0 r—0 r
(3 —G(x:t — t+r
— lim (G(az,r—&-t) Gzt —7) +][ H(x;s)ds)
r—0 271 -

= 0:G(;7)|r=t + H(z; 1)
= (G(z;t) + tOrG(x; 1) |r=t) + tH (z;1)

(19) 2
DL gmasw)+ S sewdyref  h)dse)
8B (x,t) B(x,t) 8B (z,t)

ly — x|

-/ - (9000 + a0 L%+ an) ) asto)

— [ o)+ Vo) (v - o) + th(y) dS ().
OB (x,t)

We have thus obtained the Kirchhoff’s formula.
Theorem 12.23 (Kirchhoff’s formula). Let v € C?*(R? x [0, +00)) be such that Ou = 0
in R?® x (0, +00). Then, for every s > 0 and every t > 0,
(90) u(z, s +1) 2][ - (u(y,s) + Vyu(y, s) - (y — @) + tdsu(y, s)) dS(y).

OB(z,t

Vice-versa, let g € C*(R®) and h € C*(R®), and define

(o1) W)= o)+ Vig) (0= + () dS().
OB(z,t

Then u € C*(R® x [0,400)) and u is a solution to

{Du = (@7 —A)u=0 inR®x(0,+00),

92
(92) u=g, Ou=nh on R® x {0}.

Proof. The second part of the theorem, that is, that the function (93) is of class C* and
that it solves the problem (93), follows from Lemma 6.1 and direct computations.

The first part of the theorem, that is, that every solution to Du = 0 in C?(R?® x [0, +-c0))
satisfies Kirchhoff’s formula (90), is the result of the discussion before the theorem. O

Remark 12.24. Notice that the integral in (90) is supported on the sphere!
§12.10. Solution by spherical means: case n = 2.

Remark 12.25. The issue here is that, for n = 2, the Euler—Poisson—-Darboux equa-
tion (89) cannot be transformed into a wave equation. (Why?)

Let u € C?(R? x [0, +00)) be a solution to the system
Ou= (07 — N)u=0 inR? x (0, +00),
u=g, u=nh on R? x {0}.
We define @ € QQ(R3X[O, +00)) by @(21, 2, 23,1) = u(z1,22,1), g € C*(R®) by §(x1, 2, 23) =
g(z1,12), and h € C*(R®) by h(x1,22,3) = u(x1,22). Therefore, @ solves
Oa= (07 —N)a=0 inR* x (0, +00),
=g, Oi=h on R? x {0}.

To avoid confusion, we denote by Bz balls in R® and by Bs balls in R?. Theorem 12.23
tells us that, denoting by & = (21, 2,0) € R® the lift of the point & = (x1,22) € R?, then

W) =00 = f (65)+Dol@) - (5 + @) 45(0)
as 1 ¢ 1
2 it L Lo s, )+ 1)+ Do) ) 4S(0) e s
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2 [ 1
= W/o /{932(17\/@) (9() + th(y) + Dg(y) - (y — 2)) dS(y) 77— ds
r=VE== g [ )+ )+ Dy ) dS) s

2 [ (9(y) + th(y) + Dg(y) - (y — x)) i
3wst? /0 /BBg(x,r) (2 — |y — z|2)1/? dS(y)d
p

_ / (9(y) +th(y) + Dg(y) - (y — z)) dy
3wst? J g, (w0 (t2 — |y — z[?)1/2

1][ g+th+Dg-(y—zx)
Ba(z,t)

2 (& 1y —al?)'7?

d(y).

Theorem 12.26 (Poisson’s formula). Let u € C*(R? x [0,+00)) be such that Ou = 0 in
R? x (0,4+00). Then, for every s > 0 and every t > 0,
1][ u(y, s) +10:(y, s) + Vu(y, s) - (y — =)

Ba(z,t)

uz,s +) = 5 &y 2P d(y)-

Vice-versa, let g € C*(R?) and h € C*(R?), and define

1 9(y) +th(y) + Vg(y) - (y — )
2Ji2<x,t> (&2 — |y — a]?)1/2 1)

(93) u(z,t) =
Then u € C*(R? x [0, 4+00)) and u is a solution to

(04) {I:Ju =@ —N)u=0 inR*x (0,400),

u=g, Ou=~h on R? x {0}.

Exercise 12.27. Compute w3, the volume of the unit ball in R3.
Solution:

w3:2/ V1—|z|?dz
Ba(z,1)
1 27
:2/ V1—r2dordr
o Jo
1
:47r/ ry1—r2dr
0

/2
[r:sint]:47r/ sintcostdt =[...] = —.
0

O

§12.11. Solution of the wave equation in all dimensions. For the next theorem,
see |7, Th. 5.15, page 170] or [5, Th. 2.4.2, page 77].

Theorem 12.28 (Odd dimensions). Let n > 3 odd, say n = 2m — 1 for m > 2, or
m =" Let g€ C" T (R"), h € C"™(R™), and define

= L[(2) (22) (][u ds<y>)
T (%%) . (t"‘?fa R0 dS<y)> }

where 7y, is the product of the odd numbers from 1 to n — 2.
Then u € C*(R™ x [0, 400) and u is a solution to

Ou= (07 —N)u=0 inR" x (0, +00),
u=g, Ou=~h on R™ x {0}.

For the next theorem, see |7, Th. 5.17, page 171] or [5, Th. 2.4.3, page 80].
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Theorem 12.29 (Even dimensions). Let n > 2 even, say n = 2m — 2 for m > 2, or
m= "2 Let g€ C"T'(R"), h € C"™(R"), and define
(96)

= £ (2) () (oh o tma)
(i) (“’Ji(m,t) Ty dS(y)) |

where Bn is the product of the even numbers from 1 to n.
Then u € C*(R™ x [0, 400) and u is a solution to

{Du =07 —Nu=0 inR™ x (0,+00),

u=g, Ou=nh on R™ x {0}.
Remark 12.30. Notice that in both theorems 12.28 and 12.29,
m = {QJ +1
=3 :
Exercise 12.31. Recover Kirchhoof’s formula (93) from (95). O
Exercise 12.32. Recover Poisson’s formula (93) from (96). O

§12.12. Solution to the nonhomogeneous wave equation: Duhamel’s principle.
For the next theorem, see [7, Th. 5.25, page 175] or [5, Th. 2.4.4, page 81].

Theorem 12.33 (Nonhomogeneous equation with null initial data). Let n > 2 and f €

C’L%JH(R" x [0,400)). For every s > 0, let us : R™ x [s,400) — C be the solution in
C?*(R™ x [0, +00)) to

Ou= (0 —A)u=0 inR"™ x (s,400),
u=0, du= f(,s) on R™ x {s}.

Define u : R™ x [0,400) — C by

¢

u(z,t) :/ us(z,t) ds.

0

Then u € C*(R™ x [0, +00)) and u is a solution to
{Du: (07 —MNu=f inR"x (0,400),

u=0, Ou=0 on R™ x {0}.
Exercise 12.34. Prove Theorem 12.33. O
Exercise 12.35. Write explicitly u from Theorem 12.33 for n = 2 and n = 3. O

Theorem 12.36 (Nonhomogeneous wave equation). Let n > 2 and m = L%J + 1. Let
f€C™(R" x [0,4+0)), Let g € C™TH(R™), and h € C™(R™).

Let uo be the function given by Theorem 12.28 and 12.29, and ui1 the function given by
Theorem 12.33. Set w = uo +u1. Then u € C*(R™ x [0, +00)) and u is a solution to

Ou= (0 —Nu=f inR"x (0,400),
u=g, Oiu=nh on R™ x {0}.

Exercise 12.37. Prove Theorem 12.36. O



INTRODUCTION TO PDE 55

Part 2. Distributions
13. DISTRIBUTIONS

Here we run through the fundamentals of the theory of distributions omitting a few
details. The details can be recovered by thinking through this material, or reading Rudin’s
book [11], which I strongly recommend:

e W. Rudin. Functional analysis. Second. International Series in Pure and Applied
Mathematics. McGraw-Hill, Inc., New York, 1991, pp. xviii+-424

Another valuable reference is Hormander’s first book of his series on linear partial
differential operators [9]:

e L. Hormander. The analysis of linear partial differential operators. 1. vol. 256.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences|. Distribution theory and Fourier analysis. Springer-Verlag, Berlin, 1983,
pp. ix+391

Hoérmander monograph is one of the most important resources on PDE. The text is has
a very high density, and this can lead to obscurity: if you read it slowly, it will become
crystalline clear!

An even denser reference is Chapter Four of Federer’s book [6]:

e H. Federer. Geometric measure theory. Die Grundlehren der mathematischen Wis-
senschaften, Band 153. Springer-Verlag New York Inc., New York, 1969, pp. xiv+676

There, you can find a more general construction of distributions, where test functions
are smooth functions Q — Y, where € is an open set in a Banach space and Y is another
Banach space. As for Héormander, Federer’s style is at times obscure, but extremely pre-
cise, abstract and general. Read it slowly.

Never forget to check out Wikipedia:
e https://en.wikipedia.org/wiki/Distribution_(mathematics)

Finally, the founding father of distributional calculus was Laurent Schwartz3, who won
the Fields medal in 1950 for the reason®:

Developed the theory of distributions, a new notion of generalized func-
tion motivated by the Dirac delta-function of theoretical physics.
He then wrote a beautiful autobiography [12], which I suggest everyone to read:
e L. Schwartz. A mathematician grappling with his century. Transl. from the French
by Leila Schneps. English. Basel: Birkhauser, 2001.
This is the English translation. I have an Italian translation at home, but the original
is in French. Probably, there is a German translation too.

§13.1. Test Functions. For every set £ C R", we define
P(E) ={¢ € CZ(R") : spt(¢) C E}.

If Q@ C R™ is an open set, then Z(Q) is the space CZ°(Q2) of smooth functions Q@ — C
with compact support. We call elements of Z(Q2) test functions. We write just 2 for
2(R™).

We endow 2(Q2) with a topology that has the following property: For every sequence
{¢itien C 2(Q) and ¢ € 2(9),

- 2() JK € QVj € Nspt(¢;) C K, and
(97) % 779 9 yaeN' limyu |[DG; — D6 = 0.

Exercise 13.1. We can see Z({2) as a subspace of Z(R"), but not as a closed subspace.
Why? 0

3https://en.wikipedia.org/wiki/Laurent_Schwartz
4h‘ttps ://www.mathunion.org/fileadmin/IMU/Prizes/Fields/1950/index .html
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§13.2. The topology of test functions. We will use only the In most of the situations,
Property (97) is everything we need to know about the topology of 2(2). However, the
fact that this notion of convergence descends from a topology, is a non-trivial fact which
needs precise definition of that topology.

There are three ways to construct the topology of test functions. First of all, for
K C R" compact, the space Z(K) is a Frechét space when endowed with the family of
pseudonorms

[ulla = [ID%ul| oo £y, a €N,

The first way to construct the topology of Z(£) is defining the collection g of all convex
balanced sets W C 2(Q2) such that 2(K) N W is open 2(K) for all K C Q compact. A
a set W is balanced if \W C W for all A € C with |[A| < 1. The collection § induces a
topology 7 make of unions of elements of {x + W : z € Z(K), w € 8}. Then 7 makes
2(Q) into a locally convex topological vector space.

The other two ways are in terms of initial and final topologies:

Definition 13.2 (Initial, or projective, topology). Given a set Y and a family of topolog-
ical spaces {Z;}ier and functions f; : Y — Z;. The initial topology or projective topology
induced by the family of functions f; is the coarsest (i.e., smallest) topology in Y that
makes all functions f; continuous.

Definition 13.3 (Final, or inductive, topology). Given a set Y and a family of topological
spaces {X;}ier and functions f; : X; — Y. The final topology or inductive topology
induced by the family of functions f; is the finest (i.e., largest) topology in Y that makes
all functions f; continuous.

So, we start with the Banach spaces
Cl'(K) ={¢:R" — C of class C™ with spt(¢) C K},
where the norm is
(98) [8llcm (@) = max{[|D*¢| Lo (o) : |a] < m}.

Then we set
CE(K) = ) C(K)
meN
endowed with the initial topology induced by the functions Cg°(K) — CT'(K); and then
(99) @) =cr@=Jcrw=J M),
KeQ KEQ meN

endowed with the final topology induced by the functions C¢°(K) < C°(Q).
An equivalent way is to take first

cr@) = o)
KeQ
endowed with the final topology induced by the functions C7*(K) — C7*(€2), and then
(100) @) =cx@=(cr=) U K
meN meN Ke
endowed with the initial topology induced by the functions CZ°(2) — C*(Q).

Exercise 13.4. Show that the two topologies coming from (99) and (100) are the same.
%

§13.3. Continuity of linear operators.
Proposition 13.5. Let Y be a locally convex space and L : () — Y linear. Then the
following are equivalent:

(1) L is continuous;
(2) if $; = 0 in 2(Q) then Lp; — 0 inY;
(8) the restrictions of L to every CZ(K) C 2(Q), for K € Q, are continuous.

Proof. The equivalence (2) < (3) is clear, as it is clear (1) = (2). The implication (3) =
(1) follows from the properties of the topology in 2(€2). See Rudin [11, Thm.6.6]. O
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§13.4. Distributions. A distribution is an element of the dual space 2'(Q2), that is, a
continuous linear functional 2(2) — C. The topology of 2'(f) is the weak* topology:
For every sequence {A;}jen C 2'(Q) and A € 2(Q),

A4 7D4 o vee Q) Jim A;[¢] = Al].

We write just 2’ for 2'(R").

§13.5. Functions as distributions. To every f € Li.(Q), we associate a distribution
Ar € 2'(Q) defined by, for ¢ € 2(Q),

Aslg] = / f(@)é(z) da.

Let’s show that Ay is a distribution. Clearly A is linear. We need to show it is continuous.
If ¢; — ¢ in 2(Q), then there is K € Q with spt(¢;) C K and |[¢; — ¢||po@) — O.
Therefore,

|As(¢5] — Aol S/Qlf(x)l\fiﬁj(a?)—qﬁ(ﬂc)\dxﬁ/Klf(x)ldx\lfzﬁj—¢\|L°°<m — 0.

This shows that Ay is continuous.

The Fundamental Theorem of Calculus implies that, if f,g € Li,.(Q) are such that
Ap = A, as distributions, then f = g almost everywhere, that is, f = g in L (Q). We
thus have an inclusion Li,.(Q) < 2(Q).

We can say more about this inclusion: it is continuous. Here we consider on Li ()
the topology of local convergence in L', that is, f; — f in Li,.(Q) if and only if, for every
K € Q, wehave fj|x — f|x in L'(K), ie., || fi—fllz1(x) — 0. So, if f; — fin Lj,.(2) and
6 € D(Q), |47, 161~ Afldll < [0y 5@~ F@NI6@)] dw < [1f5—F 21 pecaplléllie — 0.

Exercise 13.6. Find a sequence f; € Lj,.(R) such that || f; 1101 =1 but Ay, — 0 in
7' (R).

Hint: Take fj(z) = Z?zl(—l)JIL((]-_l)/Qn,j/Qn)(:E). Then fol |fi(z)|de = 1. If ¢ €
2(Q2), then there is L such that |¢p(x) — ¢(y)| < L|z — y| for every z,y € R.

[ @o@ s =[S0 [T o@)ds
R J=1 (i—-1)/2m
21 1/2™ . .
_ (i1 j-1. 1
AL (e(Fm ) e (Fmra)) e
Jj=1
277,71 1/2n
< / %dx
j=1"0
£2n71 L

O

Exercise 13.7. Show that f; — 0 weakly* in Li,.(R™), if and only if Aj; = 0in 2'(R™).
The weak* convergence is [, fjgdz — 0 for all g € L°(R™) with compact support. O

After this, we can denote still by f the distribution Ay, that is,
Lioc(Q) C 2'(Q).

Exercise 13.8. Let {ug}ren C C°°(2) be a sequence of harmonic functions and suppose
that ur, — A in 2'(Q). Show that A is a harmonic function. O
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§13.6. Measures as distributions. Let p be a Radon measure on Q: p € Rad(2). Then
we define the distribution

A00] = [ (@) duta).
Q
As we saw with functions, the map p +— A, is a continuous embedding:
Rad(Q) C 2'(Q).
Examples of Radon measures:
(1) The Dirac delta centered at z € Q is the measure §, defined by: §,(F) = 1
ifx € E, :(FE) =01if x ¢ E. On test functions, the Dirac delta acts as an
evaluation: d,[¢] = ¢(z).

(2) If E C 9 closed or open, the measure .£"|g is Radon.
(3) Integration over embedded submanifolds of {2 are Radon measures.

§13.7. Order of a distribution. A distribution A € 2'(Q) has order (up to) N is there
is C' < oo with

Vo € 2(Q), Alg] < Clidllen -

Recall that the norm ||@|cn () Was defined in (98). Notice that if A has order NV, then it
has also order N + 1. We say that A has order exactly N if it has order N but not order
N —1.

Proposition 13.9. A linear functional A : 2'(Q) — C is continuous, i.e., a distribution,
if and only if it has locally finite order, that is, for every K € () there are N € N and
C < oo such that, for every ¢ € 2(Q) with spt(¢) C K, A[g] < Cll¢llan (q)-

Proof. In this proof, we use two key facts. First, the norms defined in (98) satisfy
lollen @) > ll¢lloro) Whenever k < N. Second, if we fix k € N and K € Q, then
A is a continuous linear functional (Z(K),| - [[ckx)) — C, that is, there is C) such
that A[¢] < Crl|¢llcr(q) for every ¢ € Z(K). This follows from the very definition of
distribution.

So, arguing by contradiction, assume our proposition is false, that is, there is K € Q2
such that, for every N € N there is ¢n € Z(Q) with spt(én) C K, and Alpn] >
Nl¢nllen(ry- We have reached a contradiction: for every N > k, we should also
have Nl|¢n|lcr) < Nl¢nllon @) < Alpn] < Crllon|lorq)- Since Alpn] # 0, then

¢nllor ) # 0, and thus we get N < Cj, for all N > k: £.
We conclude that such a sequence {¢n}n cannot exists. O

Exercise 13.10. Show that, if A € 2'(Q2) has finite order N, then A extends as a
continuous linear operator from 2(Q) to C™ (). O

§13.8. Distributions of order 0. If X is a topological space, we define C.(X) as the
space of continuous functions X — C with compact support endowed with the L°° norm.
The closure of C.(X) in C(X) is Co(X), which is the space of continuous functions van-
ishing “at infinity”, that is,

Co(X) ={f € C(X) : for every € > 0 the set {|f| > €} is compact}.

The space Co(X) is a Banach space when endowed with the L norm. Its (topological)
dual Co(X)" is also a Banach space when endowed with the operator norm ||||¢,(xy =

sup{{[¢] : ¢ € Co(X), [|pr <1}

We define Rad(X; C) as the space of all C-valued Radon measures: the precise definition
goes as follows. Let #(X) be the o-algebra of all Borel sets. A positive Radon measure
on X is a measure A : Z(X) — [0, +00] such that (see [8, page 212]):

(1) X is outer regular on all Borel sets, that is, if £ € Z(X), then
AME)=inf{\(U): E CU, U open};
(2) A is inner regular on all open sets, that is, if £ C X is open, then
A(E) =sup{\(K) : K C E, K compact};
(3) A is finite on compact sets, that is, A\(K) < oo for all K C X compact.
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We denote by Rad(X; [0, +0o0]) the space of all positive Radon measures on X. A complex-
valued or real-valued Radon measure is a Borel measure p : #(X) — K with K € {R, C}
whose total variation is |u| € Rad(X;[0,+oc]). We call the space of these measures
Rad(X;K) for K € {R,C}. In fact, if u € Rad(X;K), then |u[(X) < oco. Moreover, if
u € Rad(X;R), then there are py,u— € Rad(X;[0,+00)) such that p = pg — p—. If
i € Rad(X; C), then there are p,, 1; € Rad(X;R) such that p = pr + ip,.

Recall the following result (see [8, Thm 7.17, page 223])

Theorem 13.11 (Riesz Representation Theorem). Let X be a topological space that is
locally compact® and Hausdorff®. For u € Rad(X;C) and f € Co(X), define I,(f) =
Jx fdp. Then I, is an element of the dual Co(X)" and the map p — I, is an isometric
equivalence of Rad(X; C) with Co(X)'.

Proposition 13.12. A distribution A € 9'(Q)) has order zero if and only if it is a Radon
measure.

Proof. We already know that Radon measures are distributions of order zero. Let’s prove
the other implication.

If A € 2'(Q) has order zero, then there is C such that A[¢] < C||¢||L~ for all ¢ €
2(Q). Since 2(0) is dense in Cy(Q), it follows that A continuously extends to a linear
operator Cy(€2) — C. By Riesz Representation Theorem 13.11, there is a Radon measure
p € Rad(£2; C) such that A = I,,. This means for us that A is a Radon measure. O

Exercise 13.13. Show that 2(Q) is dense in (Co(Q2), | - ||z=). O

§13.9. Distributions of order 1. Here are some examples of distributions of order 1.

(1) Alg] = 0:¢(0);

(2) Ald] = [op(0 V) - L2 dS(y).

(3) In general, if ¥ C R™ is a smooth submanifold, v : ¥ — R"™ a smooth vector
field, and dS is the surface measure on X, then A[¢] = [, Vo(y) - v(y) dS(y) is a
distribution of order 1.

(4) For example,

Aurld) = ][3 o, VW) )y

(5) the distribution A[¢] = fol ¢'(z) dz is a distribution of order one on R: |A[¢]| <
f01 |¢’(z)|dz < ||p|lc1. However, A is actually of order zero: |A[#]| = |#(1) —
$(0)] < 2[|9||co-

§13.10. Principal value. The function f: R\ {0} — R, f(z) = 1, is not integrable in a
neighborhood of 0. For this reason, we cannot see it as a distribution on R, although it is
a distribution on R\ {0}, because f € Li,.(R\{0}). However, we can define a distribution
on R as follows:

(101) 2(R) 3 ¢ — lim @ dz = p.v./ @ dx

e—0 R\[—e,€]

If spt(¢) C [—a, a], then

[ | o) ~6(0) |
R\[-e,e] T [—a,a]\[—e,€] z

Since ’M’ < ||¢'|| o<, then the latter integral converges as ¢ — 0:
p.v./ (=) dz = lim #(z) — ¢(0) dz = / #(x) — ¢(0) dz.
R T 20 [—a,al\[~e,e] z [~a,a] z

So, (101) defines a distribution by Proposition 13.9.

5locally compact: for every x € X and every U C X open with = € U there exists V' C U compact
with z € interior(K)

SHausdorff: for every z,y € X distinct there are U,V C X open such that = € U, y € V and
unv =40.
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§13.11. Adjoint operators.

Proposition 13.14. Let Q1 and Q2 be open subsets of R™. Let ® : (1) — 2(0Q2)
be a continuous linear operator. Then there is a sequentially’ continuous linear operator
O : 9'(Q2) = 2'(Q) such that, for every A € 2'(Q2) and ¢ € 2(Q1),

(102) " Alg] = A[Pg).

Proof. For every A € 2'(£22), define ®* A by (102). Notice that, ®*A = Ao ®. Therefore,
since both A and ® are linear and continuous, then ®*A is linear and continuous. We
need to show that ®* is continuous. Let A; — A in 2'(Q2). Then, for every ¢ € 2(Q1),
we have limj_oc P A;[¢] = limj oo A;j[Pg] = A[PP] = P*A[p]. This shows that d* is
sequentially continuous. O

Proposition 13.14, combined with Proposition 13.5, is the key tool to extend operations
from functions to distributions. We will use it all the time!

§13.12. Derivatives of distributions. If A € 2'(Q) and a € N", define, for every
¢ € 2(),
(103) D*A[g] = (—1)'*/A[D¢)].

Exercise 13.15. Show that, if a € N the function ¢ — D%¢ is a continuous linear
operator 2(Q) — 2(Q). O

By Exercise 13.15 and Proposition 13.14, the A — D%A is a continuous operator
2'(Q) = 2'(Q).

Exercise 13.16. Let f € CV(Q) and ¢ € 2(Q). Show that, for every a € N™ with
la| <N,

/ D® f(z)(x) dx = (~1)l°] / F(2)D% () da.
Q Q
In other words, D* Ay = Apay. O

Exercise 13.17. Show that, if A € 2’(Q), then D*D?A = D*TA = DDA for all
a,B €N, O

Distributions are thus infinitely differentiable: this is one of the main features of dis-
tributions. In particular, we have derivatives of every order for each function in Li,.(€).
Exercise 13.16 shows that, if a distribution Ay is a function f of class C N then derivatives
defined by (103) are coherent with derivatives of f.

Proposition 13.18. Let f € Li.(R) be such that there is g € L*(R) with DA; = A,
i.e., Df = g in distributional sense. Then, for almost every x € R,

fla) = / " ) dy.

Consequently, up to changing f on a set of measure zero, f is absolutely continuous and
f' =g. In particular, if f and g are continuous, then f € C*(R) and f' = g.

Proof. The identity DAy = A, means that, for every ¢ € 2(R),

(104) [ swewas—— [ f@¢ @

—o0

"Recall that T : X — Y is sequentially continuous if for every ; — T in X we have Tx; — Tro00
in Y. Instead, T is (topologically) continuous if for every open set V C Y the preimage T~ (V) is open
in X. In topological spaces, (topological) continuity implies sequential continuity. The converse is false
in this generality.

(A way to recover continuity from convergence is by means of nets, a generalization of sequences:
a sequence in X is a function N — X, a net in X is a function w — X for some ordinal w. “Netial”
continuity implies continuity.)

It remains unclear to me if sequential continuity implies continuity in the context of Proposi-
tion §13.11.



INTRODUCTION TO PDE 61

Define

We claim that Ay = A,. If ¢ € Z(R), then

Aol = [ " u(@)é() da

-/ i | swot)dyda

[Change of variables] = / / g(t)p(t + s) dsdt
—o0 J0

:/OOO [Zg(t)qﬁ(t—l—s)dtds
) 7/00o /_o:o () (t + s)dtds

—— [ sl dt = Aslo].

where we performed the following change of variables: * =t + s, y = t, dz A dy =
(dt+ ds) A dt = dsA dt, and {z € R, y € (—o0,z]} = {y €R, = € [y,+00)} = {t €
R, s € [0,400)}. We have thus obtained that A, = A as distributions, and we know
that this means that f = v almost everywhere (see §13.5), that is, (104). O

Exercise 13.19. Show the following proposition:

Proposition 13.20. Let Q C R"™ be open and f € C(Q) a continuous function. Syppose
that, for every j € {1,...,n}, there is a continuous function g; € C(Q) such that D? Ay =
Ag;, t.e., D) f = g; in distributional sense. Then f € CY(Q) and D' f = g;.

O

Exercise 13.21. Let f : R — R be a function with bounded variation. For instance,
the Cantor staircase function. Show that DAy = A, where u € Rad(R) is the measure
defined by

([a, b)) = f(b) — f(a)
for all a,b € R with a < b. For instance, if f is the Cantor staircase function, then we know

that, for almost every z € R, f is differentiable at = and f’(x) = 0. However, DA; # 0.
Hint: see [11, §6.14]. O

§13.13. Intermezzo: Banach—Steinhaus Theorem. We will need to cite Banach—
Steinhaus Theorem. Here we see a version of its statement that is less general than the
original, but it is what we will need later on. Before stating the theorem, we fix the terms
used.

A family T" of linear functions v : X — Y between topological vector spaces is equicon-
tinuous if for every open neighborhood V of 0 in Y there exists an open neighborhood U
of 0 in X such that v(U) C V for all v € I'. As as short notation, for I' C Lin(X;Y") and
E C X, we define

I'E)={y(z):vel, € E} CY.

In the finite-dimensional case, i.e., when both X and Y have finite dimension, equicon-
tinuity is equivalent to boundedness (in the operator norm) and pre-compactness. In the
infinite dimensional case, this is not the case.

A Fréchet space is a topological vector space (X, 7) such that

(1) the topology T is generated by a complete invariant metric (i.e., a complete dis-
tance function d : X x X — (0,400) such that d(z + z,y + 2) = d(z,y) for all
z,y,2 € X);

(2) X is locally convex, that is, for every U C X open with 0 € U there exists V C U
open with 0 € V and V convex.
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A subset £ C X in a topological vector space X is bounded if for every U C X open
with 0 € U there exists A > 0 such that &' C AU. This notion of boundedness might look
abstract, but you can easily show the following statement: If E = {z;};en is a convergent
sequence in X, then E is bounded.

Exercise 13.22. Show that, if F = {z;},en is a convergent sequence in X, then F is
bounded. 0

Theorem 13.23 ((Consequence of) Banach—Steinhaus Theorem). Suppose that X is a
Fréchet space and'Y a topological vector space, I is a collection of continuous linear maps
from X to Y. If

Ve e X I'(x) is bounded in Y,
then T' is equicontinuous.
See [11, §2.1-§2.6], and also the Wikipedia page.

Corollary 13.24. Let X be a Fréchet space, Y and Z topological vector spaces, and
B: X XY — Z a bilinear map. Suppose that B is continuous in each entry separately,
i.e., for every x € X the linear map Y — Z, y — B(x,y), is continuous, and for every
y €Y the linear map X — Z, x — B(x,y), is continuous.

If {zj}ien C X and {y;}jen C Y are sequences with im; oo ; = Zoo n X and
limj 500 Yj = Yoo 0 Y, then
Jj—roo

Proof. For j € NU {oc}, define b; : X — Z, bj(x) = B(z,y;). Set I' = {b;}jenu{oc}-
Since B is continuous in each entry, the functions b; are continuous. If z € X, since I'(z)
is a sequence in Z convergent to boo(z), then I'(z) is bounded. By the Banach—Steinhaus
Theorem 13.23, I is equicontinuous.

We are now ready to prove (105). Let U C Z be a neighborhood of 0 in Z. We want
to show that there is V € N such that

(106) AN eNVj >N B(zj,y;) € B(Zoo, Yoo) + U.

As a general fact in topological vector spaces, there is UcUu neighborhood of 0 in Z
such that U — U C U. Since I is equicontinuous, there is V' C X neighborhood of 0 in X
such that I'(V) C U. Since Tn — Too, then there is N € N such that x,, — xe € V for all
n > N. Up to taking N larger, we have also B(Zwo, Yoo — Yj) € U for all n > N, because
y +— B(Zoo,y) is continuous and thus lim;j_co B(Teo, Yoo —y;) = 0. So, for j > N we have

B(j,y5) = B(too, Yoo) = B(xj — Too, Yj) — B(Too, Yoo — Yj)
=bj(zj — Teo) — B(Too,Yoo —y;) €U —U C U.
We have thus obtained (106). O
§13.14. Product of distributions. A derivative is usually defined using the Leibniz
rule: 9(fg) = fOg + g9f. The product of two distributions is not well defined... We will

see special situations in which we can multiply two distributions, but there is not a general
product of two distributions.

§13.15. Product of a smooth function and a distribution. If A € Z2(Q2) and f €
C* (), then we define fA by

(FA)¢] = Alf¢l.

Again, we justify this formula with Proposition 13.14: indeed, the map ®; : ¢ — fo is a
continuous linear operator Z(Q2) — Z(Q). So, ®}A = Ao & defines a continuous linear
operator 2'(Q) — 2'(Q).

Proposition 13.25. If fi — foo in C®(Q) and Ay — Ass in 2'(Q), then frAr — fooAso
in 2'(Q).

Proof. Consider the bilinear map B : C*(Q) x 2'(Q) — 2'(Q), B(f, A) = fA. We have
seen that B is continuous in each entry separately. Since C'*°(Q) is a Fréchet space, we
conclude thanks to Corollary 13.24 of the Banach—Steinhaus Theorem. O


https://en.wikipedia.org/wiki/Uniform_boundedness_principle
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Corollary 13.26. If ¢; — ¢oo in 2(Q) and A; — A in 2'(Q), then limj_oc Aj[p;] =
Algoo].

Exercise 13.27. Prove Corollary 13.26 using Proposition 13.25. O

Exercise 13.28 (Generalized Leibniz Rule). Show that, if u € 2'(2) and f € C*(Q),
then, for every a € N,

(107) D*(fu) =Y <0‘> D?f. D Pu.
Bla A

Hint: First of all, understand this formula when wu is a smooth function. Then consider
the case || = 1 (just one derivative). O

§13.16. Locality. We say that two distributions A1, A € 2'(Q) are equal on an open
set w C , that is, A1 = Az in w, if A1 = As¢ for all ¢ € Z(w).

Proposition 13.29. Let % be an open cover of an open set Q@ C R™ and let {Au Ywew
be a collection of distributions with:

(1) A, € 2'(w) for allw € %, and,

(2) Aw, = Aw, n w1 Nws for all wi,ws € % .
Then there exists a unique A € 9'(Q) with A= A, inw for allw € % .

Proof. Let {1;},en be a partition of unity subordinated to % . More precisely:
(1) ¥; € CZ(Q) for all j;
(2) for every x € Q the set {j : ¢;(x) # 0} is finite;
(3) 22, %i(z) =1 for all z €
(4) for every j € N there is w; € % such that spt(v;) C w;.
We fix the subcover {w;}jen C Z.

Define A : 7(2) — C as follows: if ¢ € Z(), then A[g] = >, Aw;[¥;¢]. Notice
that, since spt(¢) is compact and the local finiteness of the cover {w;};, the sum is a finite
sum.

Clearly A is linear. If ¢ — 0 in 2(Q2), then there is K € Q with spt(¢x) C K for
all k. So, there is N € N with K C U}_, w; and A[gx] = 3200, Au, [th;¢4] for all k. We
conclude that limg_—oo A[pr] = Z;V:1 limg—s 00 Aw, [1; limg 00 ¢] = 0.

By Proposition 13.5, we obtain that A € 2'(Q).

Ifw € %, then, for every ¢ € Y (w), we have A[p] = 3. Aw; [¥j0] = 3 ey Aultid] =
AuDen¥i9] = Au[¢], where we used the fact that spt(y;¢) C spt(¢;)Nspt(¢) C w;Nw,
that A, = A, on w; Nw, that there is a finite set J C N such that spt(¢;) Nspt(¢) # 0,
and that, for every = € spt(@), > ey ¥i(z) = 32,0, ¥i(z) = 1.

Finally, we need to show uniqueness. Suppose there is A € 2'(Q) such that_fl = A,
on w for every w € %. Then, for every ¢ € 2(Q2), Alg] = A[D_;¢;0] = 32, Alth;¢] =
> Aw;[thid] = Al¢]. Hence, A = A. O

O —

Exercise 13.30. Show that a partition of unity exists for every open cover of an open
subset of R™. In other words, if 2 C R™ is open and % is a collection of open subsets of
Q such that |J%Z = Q, then there is a countable family of functions {¢;};en C CZ(£2)
such that

(1) 0<j(z) <1forall jand all z € Q
(2) for every x € Q the set {j : ¢;(z) # 0} is finite;
(3) 22, ¥i(z) =1for all z €
(4) for every j € N there is w; € % such that spt(v;) C w;.
Moreover, show that, if K C 2 is compact, then there is a finite set J C N such that
Yies¥ilz)=1foralze K.
Hint: Rudin has a proof. %

Exercise 13.31. Let A € 2'(2) and % an open cover of . Show that, if A € 2'() is
such that A = A on w, for every w € %, then A = A.
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The meaning of this exercise is as follows: If we start from some A € 2'(Q), then we
can localize A to each open subset of some given cover of 2, and then we can recover A
from Proposition 13.29. O

Corollary 13.32. If A € 9'(Q) is such that for every x € Q there is w C Q open with
z€w and A =0 on w, then A =0 on (.

Proof. Define % as the open cover of 2 given by the open sets w C Q with A =0 on w.
Proposition 13.29 claims that there exists a unique distribution in 2’(€2) that is equal to
A on each w € % . Since 0 is one of such distributions, uniqueness implies A = 0. O

Remark 13.33. Corollary 13.32 might look confusionally trivial. To understand it better,
it is useful to think of a situation (outside the world of distributions, of course) where
locality fails. Here is one example.

Consider the space ¥ = {a € Q'(R?\ {0}) : da = 0} of closed 1-forms on the plane
punctured plane. We consider (continuous) linear functionals ¥ — C. Let S* = {z € R? :
|2| = 1} the the unit circle. Define Ala] := [, a = [ (a(e™)]ie™) dt (we identify C with
R? for notational purposes). Notice that A is not zero: for example, Alzdy — ydz] # 0.

Now, we claim that, for every € R?, there exists w C R? open neighborhood of
such that A[a] = 0 for all @ € % with spt(a) C w. Indeed, if z ¢ S', then we can just
take w with w N'S* = (. If x € S, then we can take w = B(z,1/2), the ball of radius 1,/2
and center . If o is a closed 1 form on R? \ {0}, the integral of o over each contractible
loop is 0. So, if spt(a) C w, and if y, z € R? are the two extremal points of the arc S' Nw,
then the integral of  over S' Nw is equal to the integral of a along another path from y
to z that does not intersect the support of a (such as the boundary of w itself). It follows
that the integral of o along S* Nw is zero. This shows the claim.

§13.17. Support of a distribution. The support of A € 2'(Q) is defined as the com-
plement of the set

Q\spt(4) = U{U C Q open, such that A¢ =0 Ve € 2(Q)}.
Proposition 13.34. Let A€ 2'(Q) and ¢ € D(Q). If sptd C Q \ sptA, then Agp = 0.

Proof. Let % = {w C Q: A =0inw}. Then % is a cover of Q \ sptA, by definition
of support of a distribution. Let {%,}jen be a partition of unity subordinated to % .
Since spt¢ is a compact subset of Q \ sptA, there is N such that ¢ = Z;V:l Y;ip. So,
Ap =371, Alh¢] = 0.

We can give another proof using Proposition 13.29: Let V = Q \ sptA. Then V is
open and % is an open cover of V. By the very definition of %, each restriction A, of
A to w € % is zero. By Proposition 13.29, these A, € %'(w) (which are zero) are the
restrictions of a unique distribution on V. Since 0 is a distribution on V' so that 0 = A,
on w for each w € %, then A =0 on V by uniqueness. O

A few examples of support:
o If Af € 2'(Q) is the distribution associated to f € C(Q), then spt(As) = spt(f).
o pt(5,) = {p}.
Exercise 13.35. Show the following statement: if A € 2'(Q2) and f € C*() are such
that sptA C {f =1}, then fA = A. O
Exercise 13.36. Show the following statement: if A € 2'(Q) and f € C>(Q), then
spt(fA) C spt(f) Nspt(A). Is equality true?
Hint for question: Try with A = do. O
§13.18. Derivatives of the Dirac delta. I don’t think we will ever use the following
statement, but it is important to know it.

Proposition 13.37. Suppose A € 2'(Q), p € Q and spt(A) = {p}. Then there is N € N
and constants co € C such that

(108) A= )" D%y,

la|<N
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where 5, = P(p) is the Dirac delta, see §13.6.
Conversely, if A is as in (108), then spt(A) = {p}, unless coa =0 for all a.

Proof. See [11, Thm.6.21]. O

§13.19. Distributions as derivatives of functions. I don’t think we will ever use the
following statement, but it is important to know it.

Theorem 13.38. For ever A € 2'(Q) there are continuous functions go : Q@ — C for
a € N™ such that the infinite sum ) ga is locally finite and

A= Z D%aq.

aeN™
Proof. See [11, Thm.6.28|. O

Exercise 13.39. Use Theorem 13.38 to show the following: if A € 2'(R), then there
exists g € C(R) and N € N such that A = g™ (N-th distributional derivative of g). ¢

Remark 13.40. Here is an example of the situation described by Theorem 13.38. On
R, consider the Dirac delta at zero dg. The theorem claims that there is a continuous
function ¢ : R — C and N such that ¢ = &y, see also Exercise 13.39. In fact, if
g(x) = [*__ o, +00)(y) dy, then (Exercise!) g = .

§13.20. Convolution of functions. If f,g : R — C are measurable functions, we
define

(109) frg@) = [ fly)glz—y)dy,
R"L
whenever the integral is well defined, i.e., whenever y — f(y)g(x —y) is integrable. Notice

that, as soon as y — f(y)g(x — y) is integrable, then not only f * g(z) is well defined, but
also

frgl@)= [ fy)g(z —y)dy = / fz—y)g(y)dy = g * f(z).
R’Vl ]Rn

Exercise 13.41. Show that, if f € L*(R") and g € L°°(R™), then f % g(z) is well defined

for all z € R"™ and in fact f * g € C{ (R™). O

Exercise 13.42 (Young’s inequality). Show that, if f € L'(R™) and g € LP(R™) with

p € [1,00], then f * g € LP(R™) and

(110) I *gller <[ fllLellgllze
Hint. By Hélder inequality, with 1 +LX =1, [If(y)gly — x)|dy = f|f(y)\1/p, .

p
@719y = 2)ldy < ([ |f(y)] dy) o (J1f@W)llgly — @)[? dy)"/?. Therefore, [(f *
g(@)Pdz < ([ 1f@)|dy)”"" - [ [1fW)llg(y = )P dydz < ([ |F(w)|dy)**" - [1g(y)[” dy -
J1f(w)ldy. 0
Exercise 13.43. Show that, if f,g € C°(R™), then
spt(f * g) C spt(f) + spt(g).
Can you find a case where equality holds? And where equality does not hold? %

§13.21. Translations and inversion of a distribution. We will extend the definition
of convolution to distributions. To do so, we need two linear operators on distributions:
here they are.

For z € R", define 75, : R® — R" by 7,(y) = y — . For x € R", define the continuous
linear operator 7o, : 2 — 2 by

Tz = ¢ O Ty,

for all ¢ € 2. In other words, 7,¢ = 7, ¢ is the pull-back via 7,. By Proposition 13.14,
we have a continuous linear operator 7, : 2" — 9’

T Alg] = Algp o 7).
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In other words, 7 = (75)« is the push forward induced by the pull back induced by 7.

R™ R™
Yy—y—x

2 ; 2
P> PpoTy

, D ,

[
A (¢ AlgpoTz])

I think at this point the amount of confusion surpass the amount of information.
Next, define the continuous linear operator ¥ — %, ¢ — ¢, by

¢z p(—x).

The notation ¢ will clash with the inverse of the Fourier transform: I do not know how to
avoid this clash at the moment. For now, we follow Rudin’s notation.

Exercise 13.44. Show the relations
TyTz = Ty+z;
(111) (129)" = T2
(112) 7(D%¢)" = (=1)/*'D*(7.4).
O

§13.22. Convolution of a distribution. Let ¢ € C°(R") = 2 and v € 2’. Define
¢oxu:R" — C by

(113) (ux ) () = ulrzd).
Note that 7.¢(y) = ¢(y — x) = ¢(z — y). Notice that, if u is a function, then

(us 0)(2) "2 ulr.d] = / u(y) (2 )(y) dy = / u(y)o(—(y — ) dy "= wx o(x).
Exercise 13.45. Show that, if u € 2’ and ¢ € 2, then
(114) ulg] = (u * $)(0).

Exercise 13.46. Show that, if u € 2" and ¢ € 2, then
(115) spt(u * @) C spt(u) +spt(¢) = {z +y : x € spt(u), y € spt(d)}.

Solution. Notice that, if z € R™ and ¢ : R® — C, then 7,é(y) = ¢(x — y) # 0 if and only
if z — y € spt(¢), if and only if y € z — spt(¢). Therefore, spt(r.4) = = — spt(¢).

Let € R™\ (spt(u) + spt(¢)). Notice that, if y € spt(¢) N spt(u), then there is z €
spt(¢) with y = z—z € spt(u), thus © = y+z € spt(u) +spt(¢). Since z ¢ spt(u)+spt(¢),

then spt(7.4) Nspt(u) = 0. We conclude that u * ¢(x) = u[r.¢] = 0. O
Exercise 13.47. Show that, if u € 2, ¢ € 2 and v € R", then
(116) u* (Tod) = To(u * @).

Exercise 13.48. Show that ¢ — wu * ¢ is linear.

Exercise 13.49. Show that dg * ¢ = ¢ for every ¢ € 2. What is d, * ¢7

Proposition 13.50. Ifu € 2’ and ¢ € 9, then ux ¢ € C°(R") and, for every a € N*,
(117) D%ux¢) =ux* (D*¢) = (D%u) x ¢.
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Proof. If v € R™ and v € R", then

Dy (u % 8)(z) = lim 3 0@ T HV) —u* é()

h—0 h

i Ulrend] = ulrad]
h—0 h

— i, [0 =t) e
h—0 h '

Since ¢(z + hv —y) — ¢(z —y) = Dyp(x — y) in & as h — 0, then

lim v, [ 2@+ —9) = 6z
h—0 h

Yy
| = wDuste ~ )] = Do)
This shows that, for every z € R",

D’ (u* ¢)(2) = (u* D’ ¢)(x).
Iterating, we get the first part of (117).

Next,
u* (D%¢)(x) = u[r=(D"¢) "]
" (-)lu[D? ()
= D%u[rs ]
= ((D%u) * ¢) ().
We thus have completed the proof of (117). O

Proposition 13.51. Ifu € 2’ and ¢,v € 2, then
(118) # (P 9) = (ux ) * 1.
Proof. We use Lemma 13.52 and Proposition 13.50:
w (¢ ) (2) = ulra(¢* )]
:uy[(¢*w)v( )]

= uy (¢ *
[ oz —y—2) (z)dz]
[hmzzz R p(x —y — hz)w(hz)}

[by Lemma 13.52] = }1112% Uy [Z h'o(x —y — hz)w(hz):|

ZEL™
[since the sum is finite] = }LILI%) Z h'uyp(x — y — hz)|Y(hz)
zE€EL™
[p(z —y = hz) = Toon=d(y)] = lim > 7 B" (ux ¢)(x — h2)lW(he)

zZ€L™

[by Lemma 13.52 and Proposition 13.50] = / (ux*@)(x— 2)P(z)dz
— (u*9) * (o).

Lemma 13.52. Let p € Y and Y € &. For h > 0, define
= > h"¢(z — hz)ip(hz).
zZEL™

Then pn, € & for all h > 0 and limp_0 pp = ¢ * 1 in &.
Moreover, if ¥ € 9, then limp_,0 pr, = ¢ x Y in D.
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Proof. Clearly py, is smooth. The support of pj, is contained in spt(¢) + spt(y)) (cfr. Ex-
ercise 13.43). Since the function (z,y) — ¢(x — y)9(y) is continuous, then pp — ¢ *
uniformly on compact sets (see Exercise 13.55). The derivatives of pj, have the same form,
ie.
D%pn(z) = Y h"Dsd(z — hz)ih(hz).
ZEL™

So, D%pp, — (D%@) * ¢ = D¥(¢ * ) uniformly. We obtain pp — ¢ * 1 in &.
If ¥ € 9, then (z,y) — ¢(z — y)(y) is uniformly continuous with compact support.
Reasoning as above, we obtain pp, — ¢ * 1 in 2. ]

Exercise 13.53. In this exercise, you show that Riemann sums converge to the integral.
Let f : R™ — C be a continuous and integrable function. (Integrable: [, |f(z)|dz <
00). For h > 0, define

Fn= Y h"f(hz).
ZEL™
Show that limy_,o0 Fj, = f]R" f(z)d=. O
Exercise 13.54. [To do while listening to Paganini’s Caprice No. 24]. Variation over

Exercise 13.53: Let f: R™ x R®™ — C be a uniformly continuous and integrable function.
Define F': R" — C by

F(x) = fz,2)dz.
R’IL
For h > 0 and = € R", define
Fr(z) = Z " f(z, hz).
zZEL™
Show that Fj — F uniformly in z as h — 0. O

Exercise 13.55. Variation over Exercise 13.54: Let f : R" x R" — C be a uniformly
continuous and integrable function. Define F' : R" — C by

F(x) = flz,z)dz.
R’IL
For h > 0 and = € R", define
Fp(z) = Z h" f(z, hz).

zZEL™
Show that Fj — F uniformly on compact sets in x as h — 0. O
§13.23. Smooth approximation of a distribution. Let p € C°(R™) be such that
spt(p) = B(0,1), 0 < p <1, p=p, and [pdz = 1. Define p.(z) = p(z/e)/e". We call
the family {pc}e>0 an approximation of the identity on R™, or a family of mollifiers. For
example, one can take

kexp (%) if |[z] <1
p(z) = lo?=1 ,
0 otherwise,
where k normalizes the integral.
Exercise 13.56. Show that the function
1 .
exp (9:7—) if ‘.’17| <1
px) = S ,
0 otherwise,

is C*-smooth on R™ and compute [;' p(z)dz. Show also that p is not analytic. Does it
exist a family of analytic mollifiers?

Finally, why have I put the square in the definition of p? Do you think we could do
without?

Hint: 1 have put the square to help you. The square is itself a hint. %
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Proposition 13.57. Let {pc}eso0 be an approzimation of the identity on R™, ¢ € 2 and
u€ 9'. Then

(119) lim ¢ * pc = ¢ in 9,
e—0

. . /
limu*p.=uin 2.
e—0

Proof. The first identity was an exercise, but here is my solution. Notice that spt(pc) =
B(0,¢). Since ¢ € C}, then there is L such that |¢(x) — ¢(y)| < L|z — y| for all z,y (see
Exercise 13.58). Then, for every z € R",

6% pe(x) — 9(z)] = ]/¢><y>pe<x—y> ay—0(e) [ pute—) dy‘
< [ 16) - d(a)lpelo ) dy
< Le/pe(x —y)dy = Le.

This shows that ¢ * pc — ¢ uniformly. Since this holds for every ¢ € 2, we also have that
D (¢ * pe) = ¢ * D¥pe — D¢ uniformly, for every a € N". Therefore, ¢ x pc — ¢ in 2.
For the second identity,

114

tim w+ pe[] = Tim (u  p.) = $)(0)
U2 tim (u + (pe + 6))(0)
[because = p] = lim (u * (5. * $))(0)

[because fxg=(f= g)v] = Ehg(l)(u * (pe * ¢)V)(O)

L iy u[pe * @
e—0

L ulg).
O

Exercise 13.58. Let Q C R™ convex and ¢ € C*(Q) such that L = ||V¢||r < oo Show
that, for every z,y € 2, |6(z) — é(y)| < Llz — yl.
Question: what happens if we drop the hypothesis of € being convex? %

Corollary 13.59. The space C*°(R"™) is dense in 9’ (with respect to the topology of 2’ ).

Exercise 13.60. Show that, if Q@ C R"™ is open, then the space C*°(2) is dense in 2'(2)
(with respect to the topology of 2'(Q2)). O

Exercise 13.61. Is 2(Q) dense in 2'(Q)? (Try at least for = R").
Hint: Take Al¢] = [ ¢ dz and try to approximate A with functions in C£°(€2). %

§13.24. Constancy theorem.

Theorem 13.62 (Constancy theorem). If u € 2'(Q) is such that dju = 0 for all
j € {1,...,n}, then u is a constant function, that is, there is ¢ € C such that u[¢] =

c [o ¢(x) da for all p € 2(Q).

Proof. Let {pe}e>0 be an approximation of the identity on R™. Then 9;(u * pc) = (9;u) *
pe = 0, therefore uxp. = cc € C. Moreover, by Proposition 13.57, u[¢] = lime_,0 uxpe[@] =
lime o0 ce [ ¢(y)dy. Therefore, the is ¢ € C with ¢ = lime,0ce and ulg] = ¢ [ ¢(y) dy,
that is, u is a constant. O
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§13.25. The space of all smooth functions as a Fréchet space. We define &(2)
as the vector space C*°(€Q) of smooth functions Q@ — C, endowed with the family of
quasinorms py.k : () — [0, +00), for K € Q and N € N, where

pyk(f) =sup{|Df(z)| : z € K, |a| < N} = ||fllon x)-
The quasinorms determine a topology on &(2), where f; = foo in

. VK € Q, VN € N
i o 1n &(Q . ’
f] _>f m ( ) < hmj—>oopN,K(fj _foo) = 0.

The topological vector space &(£2) is a so-called Fréchet space.

Exercise 13.63. Check whether the topology on & () is the the initial topology induced
by the maps C*°(Q2) — C™(Q).

Hint: 1 actually don’t know if this is true. So, please send me an email with the result,
if you don’t mind. O

Notice that 2(2) C &(Q2) as sets, but also 2(Q) — &(2) continuously. Indeed,
if ¢; — 0 in 2(Q), then ¢; — 0 in &(Q), and thus the immersion is continuous by
Proposition 13.5.

However, 2() is dense in &(2) with the topology of & ().

Exercise 13.64. Show that 2(Q) is dense in &(Q). O

Exercise 13.65. Find a sequence ¢; € Z(Q2) that converges to some f in &(€2) but it
does not converge in Z(Q).

Just as a note: there is a notion of “Cauchy sequence” for topological vector spaces (see
Rudin’s book). With such a notions available, one could check that 2(2) is complete in
its own topology, but that its completion in the topology of & () is &(€2). This should
clarify the situation. O

§13.26. The dual space of &(f2)... Let &'(Q) be the topological dual of £(£2), that is,
the space of continuous linear functionals &(2) — C. A linear functional A : &(Q2) — C
is continuous if and only if, whenever f; — fo in &(Q2), then A[f;] = A[fs] in C.

The topology on &' () is the usual weak* topology, that is, point-wise convergence:

Ei 5 E.in&'(Q) & VYfeé&) lim B;[f] = Ewo[f].

§13.27. ...is made of distributions... Since 2(2) C &(Q2), then each E € &(Q) is also
a linear functional E : 2(Q2) — C. Since 2(Q2) — &(2) is continuous, or, otherwise said,
since ¢; — doo in Z2(Q) implies ¢; — Poo in &(§2), then also the restriction of E to Z(N)
is continuous. In other words, F € 2(9).

Moreover, if E; — Fo in &'(2), then clearly E; — Fo in 2'(Q2). So, we can say
&'(Q) C 2'(Q).

§13.28. ...with compact support. It remains to characterize the distributions A €
2'(2) that belong to & (Q):

Proposition 13.66.
&'(Q) = {A € 2'(Q) with compact support}.

Proof. (| From §13.27, we know that & (2) C 2'(€). We need to show that, if A € £'(Q),
then spt(A) is compact. Arguing by contradiction, suppose this is not true, that is, that
there is A € &'(Q2) with spt(A) not compact. Let {Kj}jen be a countable increasing
sequence of compact sets K; C Q such that Q = UjEN K. Since spt(A) is not compact,
then, for every j € N there is ¢; € 2(2) with spt(¢;) N K; = 0 and A[p;] = 1.

Notice that ¢; — 0 in &(€): indeed, if K C Q is compact, then there is k € N such
that K C K} and thus ¢j|x = 0 for all j > k; hence, for every K C Q compact and every
N e N, hm]‘*)oo pNyK(qZﬁj) = 0.

But we have assumed that A € &’(£2), and therefore we should have lim;_ o A[¢;] = 0,
in contradiction with A[¢;] = 1 for all j. We conclude that A must have compact support.

This inclusion does not make sense when taken literally: if A € 2'(Q2), then A is a
linear map 2(2) — C, while &(Q) is a larger space than 2(f2). So, A is NOT a function
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&(Q) — C, taken as it is. However, we need to consider that 2(Q) is dense in &(Q): so,
if there is a continuous linear functional E : £(Q2) — C whose restriction to 2(Q) is A,
then E is uniquely determined by A.

This is to say that the correct interpretation of the inclusion D] is: every A € 2'(Q)
with compact support extends uniquely to a continuous linear functional A : £(2) — C.

Let A € 2'(Q2) be with compact support. Fix some ¥ € C°() such that sptA C
interior{s) = 1}, which exists because spt(A) is compact. Define Ay : &(2) — C by
Ayf = A[pf]. Notice that, firstly, Ay, € &'(Q): indeed, if f; — foo in &(Q), then
Vi = ¥feo in 2(Q), and thus Ay[f;] = Au[fee] in C.

Moreover, if ¢ € 2(Q), then spt((1 — ¢)¢) Nspt(A) = @ and thus A[¢] = A[ypp + (1 —
Y)p] = Alpd] = Ay[d]. We conclude that the restriction of Ay to &£(Q) is A. O

Exercise 13.67. In the proof of Proposition 13.66, we have defined the extension of A €
2'(Q) to £(Q) as Ay[f] = Al f], where ¢ € C°(Q) such that sptA C interior{y) = 1}.
It looks like this extension depends on the choice of 1. Does it? %

Exercise 13.68. Show that all distributions in &”(Q2) have finite order. More precisely,
if u € &'(2), then there are N € N and C € R such that, for every f € &(Q),

[ulf]] < Cllfllen spoeuy)-
O

§13.29. Convolution of distributions with compact support. We have started with
the convolution u*wv of functions u and v. We have extended this operation to convolution
u* v where u € 9’ is a distribution and v € 2 is a smooth function with compact
support. As it happens with the product, convolution is not defined for arbitrary pairs of
distributions. However, we can still push our definition of convolution u * v to the case
when u,v € 2’ and at least one of the distributions has compact support. This is done in
three steps.

Iqu &' and f € &, then we define
(120) wx f(z) = ulra f],

exactly as we did for distributions in 2’. So, if u € 2’ has compact support (i.e., u € &’),
then u * ¢ is defined not only for ¢ € 2 = C°(R"™), but also for ¢ € & = C*°(R").

Proposition 13.69. Ifu € & and f € &, then u* f € &. Moreover
spt(u * f) C spt(u) + spt(f), and
DYux* f) =ux* (Df) = (D%u) * f, VYo € N™.
In particular, if f € 2, thenux* f € 2.

Proof. The proof is the same as for Proposition 13.50. In fact, I wonder if there is a way
to merge the two proofs into one. O

We characterize continuous linear operators ¥ — & that commute with
translations. First of all, notice that, if u € 2’, then L : ¢ — u * ¢ is a linear function
2 — &. Moreover, by (116), L commutes with translation, i.e., L o7, = 7, o L for all
v € R™. The next Lemma 13.70 shows that L is in fact continuous. Theorem 13.74 will
finally prove that all continuous linear operators ¥ — & that commute with translations
are of this form.

Lemma 13.70. If ¢; — ¢oo in P and u € D', then u* ¢p; — u* Ppoo in &.

Proof. Let ¢; = ¢oo in Z. We need to show that, if ¢; = doo in 7, then u* ¢; = u* oo
in &, that is, D%(u * ¢;) — D“(u * ¢oo) uniformly on compact sets, for every a € N". In
fact, since D*(u % ¢;) = u* (D%¢;) by (117), we only need to show that, if ¢p; — ¢oo in
P, then u * ¢; — u * poo uniformly on compact sets.

Let ¢; — ¢ in 2. Fix a compact set K C R™. Let K C R"™ be a compact such
that spt(¢;) C K for all j. Notice that, if z € K, then ¢ —y € K if and only if
yeK—K={a—-b:acK, be K}. So, for every z € K and ¢ € 2 with spt(¢) C K,
then 7, is supported in K — K, which is compact.
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By Proposition 13.9, there are C' € R and N € N such that [u[g]| < C|[¢[lcn for all
¢ € 2 with spt(¢) C K — K. Then, for every z € K,

|u* 6;(2) = u* poo ()] = [ulre(65)] — ulTe(do0)]]
< Cllma(5) = Ta(doo)lon = Clids — doollen.

Therefore, u * ¢; — u * poo uniformly on K. O
Lemma 13.71. If ¢; = ¢oo in & and u € &', then u* ¢j — u* Poo in &.

Proof. The proof is very similar to the proof of Lemma 13.70, so we will leave it as an
exercise, see Exercise 13.72. O

Exercise 13.72. Show that, if ¢; — oo in & and u € &', then ux ¢p; — U * Poo in &. O
Lemma 13.73. If ¢j; — ¢oo in P and u € &', then ux ¢pj — u* Ppoo in 2.

Proof. If ¢p; — ¢oo in P, then there is a compact K C R™ such that spt(¢;) C K for all j
and D*¢; — D%poo uniformly on K for all € N". Then spt(u * ¢;) C spt(u) + K = K
by Proposition 13.69, for all j. By Lemma 13.71, u * ¢; — u * ¢oo in &. In particular,
D*(ux ;) — D¥(u* dpoo) uniformly on K for all & € N*. This shows that u* ¢; — u* doo
in 9. O

Theorem 13.74 (|9, Thm.4.2.1]). Let L be a linear map from 2 = C°(R™) to C°(R™).
The following statements are equivalent:
(1) L is (sequentially) continuous, i.e., if ¢; — poo in D then Lj — Looo in CO(R™),
and commutes with translations, i.e., L{to¢] = 7oL for all x € R™;
(2) there is u € 9’ such that Lo = ux ¢ for all p € .

Moreover, if the above conditions are met, then the distribution u is unique, and L is in
fact a continuous linear operator 9 — &.

Proof. (1) = (2): Define u : 2 — R by u[¢] = L[$](0). Since u is the composition of the
continuous linear functions ¢ — ¢, 1 — L[], f — f(0), then wu is linear and continuous,
that is, u € 9’. Moreover,

ux ¢(x) = ulra ]
2 u(r-9)"]
= L[((7-29)")"1(0)
= L[r-.¢](0)
=T7-2L[¢](0)
= L[¢] ().
For the uniqueness, notice that, if ui,us € 2’ are such that L¢ = u1 * ¢ = uz * ¢ for all
¢ € 9, then, for all ¢ € D, u1[P] = u1 * $(0) = uz * ¢(0) = uz[@|, that is, u1 = us.
(2) = (1): By Proposition 13.50, we know that ¢ — u * ¢ is a linear map ¥ — &.

Next, by Lemma 13.70, we know that this map is continuous. Finally, the fact that this
map commutes with translations has been proven in (116) (which was an exercise). 0O

If ui,us € 2’ are distributions, one of which has compact support, then, for
every ¢ € 9,

(121) L[¢] = ur * (u2 * ¢)

is a well defined element of & and the map ¢ — L¢ is continuous. Indeed, we have two
cases:

(1) If uy € &', then us € 9'; so, uz * ¢ is defined by (113), us x ¢ € & by Proposi-
tion 13.50, and thus (121) is defined by (120). Moreover, if ¢; — ¢ in Z(Q),
then ug*x¢; — u2*@oo in & by Lemma 13.70, and thus w1 *(ua*@;) — ui*(u2*poo)
in & by Lemma 13.71.
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(2) If us € &', then w1 € 2'; so, uz * ¢ is defined by (120) and uz * ¢ € Z by
Proposition 13.69, and thus (121) is defined by (113). Moreover, if ¢; — ¢oo in
2(Q), then ug * ¢p; = uz * poo in Z by Lemma 13.73, and thus u; * (u2 * ¢;) —
u1 * (u2 * doo) in & by Lemma 13.70.
We conclude that, by Theorem 13.74, there is a unique u € 2’ such that L¢ = u * ¢ for
all $ € 9. So, we have the definition: If u1,u2 € 2’ one of which has compact support,
then

u=urku2 €9 & VOED, uxd=u1*(uz*e).
§13.30. Properties of convolutions. We summarize the properties of convolutions.

Proposition 13.75. (1) If ui,us € 2', one of which has compact support, then

ur * uz € 9’ is well defined.

(2) If ui,uz € ', one of which has compact support, then ui * uz = ua * ux.

(8) If ui,u2 € 2', one of which has compact support, then spt(ui * u2) C spt(u1) +
spt(uz).

(4) If If ui,uz,us € 9', two of which have compact support, then (ui * us) x us =
u1 * (U2 * ug).

(5) If ur,uzs € ', one of which has compact support, and o € N, then D*(u * v) =
(D%u) *x v = u x (D*v).

(6) If ui,us € 2', one of which has compact support, and one of which is smooth,
then ui x us € &.

Proof. The proof is left as an exercise. I only write the proof of spt(us * u2) C spt(u1) +
spt(us2).

Since convolution is commutative, we can assume uz € &'. Take ¢ € 2 such that
spt(@)N(spt(u1)+spt(usz)) = 0. Then (u1*u2)[P) (L (u1%u2)*@(0) = u1*(uz*$)(0) where

.15 . . (115
spt(uz * @) ( C ) spt(uz) + spt(¢) = spt(uz) — spt(¢). It follows that spt(ur * (uz * @)) ( - )

spt(u1) + spt(uz * @) C spt(u1) + spt(uz) — spt(¢). Since spt(¢) N (spt(u1) + spt(uz)) =0,

then 0 ¢ spt(u1 * (uz * @)), that is uy * (uz * $)(0) = 0. O
Exercise 13.76. Prove Proposition 13.75. Some parts have already been proven, others
instead have been proven only partially. Put all the pieces together. O
Exercise 13.77. Show that dp * u = u for every u € 2’. What is §, * u? O

§13.31. Singular support. The singular support of a distribution u € 2'(Q), denote
by singSpt(u), is the set defined by:

Q \ singSpt(u) = U{U C Q open, such that u|y € C=(V)}.
Lemma 13.78. Letu € 2'(2). The restriction of u to Q\singSpt(u) is a smooth function.
Exercise 13.79. Show that singSpt(u) C spt(u). O

Saying that a distribution u is smooth is equivalent to say that singSpt(u) = . The
smoothness statements for convolutions in Proposition 13.50 and Proposition 13.69, gen-
eralize in the following statement:

Proposition 13.80. Ifu,v € ', one of which has compact support, then
(122) singSpt(u * v) C singSpt(u) + singSpt(v).

Proof. Let A, B C R" open such that singSpt(u) C A and singSpt(v) C B. Then there
are smooth functions a,b € C°°(R™) such that
singSpt(u) C int{a = 1} C spt(a) C A,
singSpt(v) C int{b = 1} C spt(b) C B.
Then
uxv = ((au) * (bv)) + ((1 — au) = (bv)) + ((au) * (1 — bv)) + ((1 — au) * (1 — bv)).
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Notice that all these convolutions are well defined. Moreover, in all but the first one, one
of the factors of the convolutions is a smooth function. Hence,

singSpt(u * v) C singSpt((au) * (bv)) C spt((au) = (bv)) C spt(au) + spt(bv) C A+ B.
Since A and B are arbitrary, we obtain (122). O

Exercise 13.81. Show that, if F € 9’ is such that singSpt(E) C {0}, then singSpt(FE *
u) C singSpt(u) for all u that can be convoluted with E. O

§13.32. Linear differential operators with constant coefficients. A linear differ-
ential operator with constant coefficients of order m € N is a differential operator of the

form
P= Z ca D,

|| <m
with some {cq }o C C. Our four PDE are of this type:
o —b-V, —A, o — A, 97 — A.

Such a differential operator defines a linear operator P : 9’ — %’. Suddenly, we can
try to solve in u € 2’ the equation

Pu=f
for some f € 2'.
§13.33. Fundamental solution. A fundamental solution of a linear differential operator
with constant coefficients P is a distribution E € 2’ such that
PE = do,
where g is the Dirac delta centered at 0.

Exercise 13.82. Show that the function ® : R™ \ {0} — R,

— = log(|z|) ifn=2
_ 2 )
O(x) = { 1 1 ifn>3,

n(n—2)wy |z|n—2

where w,, is the volume of the unit ball in R™, is a fundamental solution of P = —A. ¢

Exercise 13.83. Show that the function ® : R” x R\ {(0,0)} — [0,400) defined by

x 2 n
(1) = Wexp(—%) for z € R" and ¢ > 0,
0 otherwise, i.e., (z,t) € (R" x (—o00,0]) \ {(0,0)},

is a fundamental solution of P = 9y — A. O

Exercise 13.84. Find a fundamental solution for the wave operator P =0 = 97 — A in
dimension 1, 2 and 3. O

§13.34. Use of fundamental solutions. A fundamental solution is useful for the fol-
lowing very simple reason. If P is a differential operator and E € 2’ is such that PE = do,
then, for every f € &,

f=fx6o=f*xPE=P(fxFE).
So, f * E is a solution to Pu = f.

§13.35. Hypoellipticity. A linear operator P is hypoelliptic if, for every Q C R™ open
and u € 2'(Q), Pu € C*(RQ) implies u € C*(Q).

Theorem 13.85. Let P be a linear differential operator with constant coefficients. Then
the following are equivalent:
(i) Some fundamental solution E of P has singSpt(F) C {0}.
(ii) Every fundamental solution E of P has singSpt(E) C {0}.
(i3) P 1is hypoelliptic.
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Proof. The implications (iit) = (i7) = (¢) are clear. We need to show (i) = (ii7). Let
2 C R” open and u € 2'(Q2) with Pu € C*(Q). Fix z € Q and let ¢y € C°(Q) such
that = € int{y) = 1}. Then ¢pu € &’. Moreover, by the Generalized Leibniz Rule (107),
P(yu) = ¢pPu+ R where spt(R) C spt(De). So
Yu = §o * (Yu) = (PE) * (Yu) = E x (P(Yu)) = E x (YPu) + E * R.
and
singSpt(yu) C singSpt(E * (¢ Pu)) U singSpt(E * R)

C U (singSpt(E) + singSpt(R))

C spt(R) C spt(Dy).
Since z ¢ spt(Dv), we obtain that = ¢ singSpt(¢u). In other words, ¢u is smooth in a

neighborhood of z. Since v is 1 in a neighborhood of x, we get that u is smooth in a
neighborhood of . We conclude that u is smooth in x. O

§13.36. Extra topics that are not covered.
e kernel theorem,
e convolution operators,
e existence of fundamental solution
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14. SCHWARTZ DISTRIBUTIONS AND FOURIER TRANSFORM

§14.1. Schwartz test functions. The Schwartz space . of Schwartz functions is the
space of functions f : R"™ — C that are smooth and such that, for every o € N and every
N € N there exists Cq,n with

(123) D f(z)| < Can(1 4+ |z))~ N, vz € R™.

In other words, a smooth function f belongs to .% if f and all its derivatives decrease at
infinity faster than any (inverse of) polynomial. An example is f(z) = exp(—|z|?).
The condition (123) can be expressed in different ways. For instance, one can require
the upper bound |D f(x)| < Cu,n(1+ |2]*)"N/2, or [DYf(z)| < Ca,n(1 + |2[*) V.
Another way to express the condition (123) is as follows: a function f € C*(R")
belongs to . if and only if, for every «, 8 € N", the seminorms

Pas(f) = sup |2°D7 f(z)|
TER™
are finite. An equivalent family of seminorms is

Pa.n(f) = sup (1+[z)V|D*f(2)].
xE€R™

We endow . with the family of seminorms {pa,g}a,senn, so that . becomes a Fréchet
space. This means in particular that convergence in .7 is defined as follows:

fi—=fein? <& Va,BeN" lim pas(fj — foo) =0.
j—oo

Notice that, set-wise,
9 C S Cé.
As usual, one can check that these embeddings are continuous.

Exercise 14.1. Show that . C L'.
Hint: Use (123) for N large enough. O

Exercise 14.2. Show that f; — fo in . if and only if :UD‘Dij — 2°DP f in L™, for
every a, 3 € N". O

Exercise 14.3. Show that, if f; — fo in .7, then, for every o € N*, D*f; — D f in
L'(R™).

Hint: Take first « = 0. Up to substituting f; with f; — fo, We can also assume
foo = 0. So we need to show that, if f; — 0 in ., then f; — 0 in L'(R"). The
convergence f; — 0 in . implies that, for every N > 0 and every € > 0, there is J € N
such that |f;(x)|(1+ |z|)Y < € for all z € R™ and all j > J. O

Exercise 14.4. Define g. : R" — [0, +00) by

1 —m|z|? /€2 1
ge(2) = e S = exp(—nlof? /).

Show that, if f € .7, then f*g. — f in .¥ as e — 0.
Hint: Go back to the proof of the first statement in Proposition 13.57. The now ge
does not have compact support, but fRn\ B(0,1) ge(x) dz is arbitrarily small as e — 0. ¢

§14.2. Fourier transform. For v € L*(R") and ¢ € R", define the Fourier transform

(124) () = F)(©) = [ e (o) da.

n

Since |e™ 2™ ¢y(x)| < |u(z)|, we readily have that 4(z) is well defined for every z € R™
and that

(125) l[dllzoe < flullz:-

In particular, we have that, if u; — too in L', then 4; — @ uniformly on R™.
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§14.3. Literature on the Fourier transform. There are a lot of resources on the
Fourier transforms. We follow in particular these three:

(1) the short account in Section 0.D, page 14, in G. B. Folland. Introduction to partial
differential equations. Second. Princeton University Press, Princeton, NJ, 1995,
pp. xii+324;

(2) Chapter VII in L. Hormander. The analysis of linear partial differential opera-
tors. I vol. 256. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences|. Distribution theory and Fourier analysis.
Springer-Verlag, Berlin, 1983, pp. ix+391;

(3) Chapter 7in W. Rudin. Functional analysis. Second. International Series in Pure
and Applied Mathematics. McGraw-Hill, Inc., New York, 1991, pp. xviii+424.

Be aware that the Fourier transform has slightly different definitions in the literature.
Beside our formula (124), there are also

/ e Cy(x) da,

1 —2mix-&

These differences will lead to differences in the formulas, usually in the multiplicative
constants. It is good to do the proofs with one formula, but also to try the others.

§14.4. First properties of the Fourier transform.

Exercise 14.5. Prove the following properties:
(1) If u € L'(R™), a € R™, and uq(z) = u(z + a) then F(u,)(€) = e*™*€.7 (u)(€).
(2) Ifu e LY(R™), T : R™ — R" is linear and invertible, then

(126) F(woT)() = |det T| " F(w)((T1)"¢).

(3) If T is a rotation of R™, then Z(uoT) = F(u)oT.
Hint: See [7, Proposition (0.21)] O
Exercise 14.6. Compute .# (@) in terms of % (u). (Here - denotes the complex conjugate,
that is, for z,y € R, x + iy = = — iy.) O
Exercise 14.7. Compute .% (u(—z)) in terms of .7 (u). O
Exercise 14.8. Fix f €. and define g(x) = f(—z). Show that §(¢) = f(¢). O

Exercise 14.9. Compute the Fourier transform of the function
2
u(z) = Ae l"I",

for every A € C and a > 0.
2
Solution: Let’s start with n =1, A =1 and a = 7, that is, u(z) = e . Then, for
§eR,

. 2 . 2
ﬂ(&) :/6—27715306—7(:16 dz :/e—szfac—wx dz.
R R

Since (x41i€)? = ¢ — €2 4 2ix€, then —2mifx — mx? = —7w(2? + 2ix€) = —7w((x +i€)* +£2)
and thus

a(€) :/e‘“((“+"5>2+52)dx = e‘"g/e‘"““@z da.
R R

Now we see that we are integrating the holomorphic function f(z) = e~ along the

curve y(t) = t + i€. Applying Cauchy’s theorem, we can integrate along the other curve
n(t) = t, and thus

_ 2 _ 2 _ 2
W) =e " /e T dr =e "¢,
R

2
because fR e ™ dz =1. So, 4 = u, or F(u) = u.
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We extend this result to R" for n > 1:
Fem o= [ e

) 2
6727” PRI LT DI dr

I Il
s ag\
—

: 2
67271'7,5_? zj—mx] dZ’j

<.
Il

2 2
6_7"5]' — e_w‘gl X

I
=

S
Il
-

Again, we have,

_ 2 _ 2
F (e || Y=e €] ,

that is, the function u(z) = e=™1*” is a fixed point of .F : L (R") — Z(R").
We now go back to the general u : R" — R, u(z) = Ae—cl=l?, By linearity of .%, we
have ,?(Aef’”le) = A?(eﬂ“’““{z). We apply (126) with Tz = \/a/7x, so that
—a|T 2 —T|T 2
FleN© = F(e T oT)(E)

2

= (a/m) "2 F (™) €/ Va/m)

n/2 2 2
iy /2 e lal?,
a

We now wrap up the solution to get

| 2

(127) F(Ae™ "

= a(Z) R

O

Recall from Exercise 13.42, that the convolution of two functions f,g € L*(R™) is a
well defined function f * g € L*(R™).

Exercise 14.10. Show that, for every f,g € L*(R"),
(128) F(fxg) = F(f)-F(9).
Or, otherwise stated, (f * g)" = fg O
Exercise 14.11. Show that, for every f,g € L*(R"),
F@)i(@)dz = [ f(€)g(e)de.
R™ R

Hint: Notice that, by (125), f§ € L'(R") and f,g € L'(R"). So, unpack the definition
of g and use Fubini. O
§14.5. The Fourier transform preserves the Schwartz class.

Proposition 14.12. If f € .7, then f € . and, for every o € N",
(129) F(Df) = (2mig)* F (f),
(130) F((—2miz)* f) = D*Z(f).

Proof. For f € & and j € {1,...,n}, we have 9;f € . and thus

7o = [

R"

exp(—2mi& - m)%f(x) dz

= [ gelexp(—2mi-2)f(@)ds [ (~2mie))exp(—2i€ - )f(x)) da

= (2mi&;) £ (£)-
Iterating, we obtain (129).
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Since .Z(D*f) € L=(R") for every o € N, we conclude that f, which a priori only
belongs to L*°(R"), in fact satisfies

(131) po.n(f) = sup (1+[€))V[f(€)] < o0,
£ERn

for every N € N.
We don’t know yet that f is differentiable. For this, we use (3.3.3) in Theorem 3.3 to
compute, for f € . and j € {1,...,n},

07N = 55 [ T @) da

- [ 2
 Jrn 08
= /w(—27rixj)e_2”€‘zf(x) dz
= F((=2miz;) f)(£)-

Iterating, we obtain (130). We conclude that f is smooth and that, for every o € N”,
since D f is the Fourier transform of a function in .#, then, by (131),

e f(a) d

Pa,N(f) = po,n(D*f) < 0.
We conclude that f c.7. 0

Corollary 14.13 (Riemann-Lebesgue Lemma). If f € L*(R™), then fe C§(R™), that

is, f is continuous and tends to zero at infinity.

Proof. We know that .# is dense in L'(R"), see Exercise 14.14. Let f € L'(R"™) and
fi € & asequence with f; — f in L'(R™). By (125), fj = fin L% (R™), that is f]' > f
uniformly. It follows that f is continuous.

We need to show that f tends to zero at infinity. For every ¢ > 0 there is j € N
with || f; — fllze < e. Then, there is R > 0 such that |f;(§)] < € for every & with
|€] > R. Therefore, if [£] > R, then |f(&)] < |f(€) — f5(€)] +1f5(§)] < 2e. This shows that
limg 00 f‘(g) =0. =
Exercise 14.14. Show that .7 is dense in L'(R™).

Hint: Given f € L'(R™), consider f;(z) = ¢(2/j)f * p1j(z), where {pc}eo is a family
of mollifiers, and ¢ € C°(R™) is a function valued in [0,1] with B(0,1) C {¢p = 1}. You
then need to show that f; € . and that f; — f in L*(R™). Use the fact that, for every
€ > 0 there exists R > 0 such that fR"\B(O,R) |f(z)| dz < e (this is a direct consequence of

integrability). O
§14.6. Fourier inversion theorem.

Theorem 14.15. The Fourier transform % : . — % is a linear automorphism of ..
In particular, if f € 7, then

(132) D@ = [ e ae

Proof. We know that Z is linear. We need to show that it is onto and into, and that both
F and ZF~! are continuous.
First we show that .% is continuous. If a, 8 € N”, then

€Df(e) =" " F (—2min)’f)
(129) 1
T (2mi)e
(—QTFi)ﬂ o a; B
=—77—%(D .
e 7 (070 )
If f; — 0in.#, then D*(2® f;) — 0in ., for every a, 8 € N". It follows that D*(2 f;) —
0 in L'(R"), and thus £*D?f; — 0 in L>°(R"™), for every a, 8 € N". This means that
fi = 0in . (see Exercise 14.2). So, % : .¥ — . is continuous.

(130)

F(D*(—2niz)”? f)
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Denote by ¢(f)(z) the quantity on the right-hand side of (132). Notice that 4(f)(z) =
F(f)(—z): so, we know that ¢ is a continuous linear operator . — .¥. We will show
that 9(#(f)) = f, for all f € .7.

For x € R™ and € > 0, define

. 2 2
Br.c(6) = T~ explamia £ — nelel?).
If we set ge(z) = eIz = exp(—7|z|?/€%), then one can compute

bae(y) = ge(z — y).

Then we have

T R A (0L

Rn

= |, ene(©f(0)d
= |, #ne@)f ) dy

= [ a—rw
= ge * f(z).

On the one hand, g x f — f in % as € — 0 by Exercise 14.4, hence point-wise. On the
2 2 A ~
other hand, e ™ 1€I" f — fin L'(R™) as € — 0. Therefore, using also the continuity of ¢,

we conclude that 4(f) = f.
We complete the proof with a bit of algebra. Define 7 : .%¥ — .7, J(f)(x) = f(—=x).
We have just proven

FoloZF =1ds.

This shows that .# is also surjective, with inverse 4 = Z o %#. O

Remark 14.16. Notice that, if you write down the formula for ¢4(Z(f)), you cannot
conclude using Fubini! In fact, we have somehow proved that

/n /n 2@V E £y dy de = f(x).

This identity does not have a meaning as integrals, because the integrand function is not
in L'(R™ x R™). However, it does look a lot the convolution of f with &y, in which case
we would have proven

(133) / T AE = o(2).
R"’L

In the latter identity, the integral is not an integral: we will make sense of (133) distribu-
tionally.

Remark 14.17. The inverse of the Fourier transform applied to f is also denoted as
f=.%7'(f). This is a problem in my notes, because I have already used this notation for
the function f(z) = f(—x). This clash of notation does not have a solution yet. I am just
renouncing to use the second meaning in this section, so that, in the context of Fourier

transform, f is only the inverse transform of f.
Exercise 14.18. Define 7 : .%¥ — ., Z(f)(z) = f(—=x). Show that
F?*=7 and F'=Ids.

Hint: Forget about the Fourier transform, but only use #Z.% = 1. O
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§14.7. Plancherel Theorem. The space L?(R™) is the space of complex valued mea-
surable functions f : R™ — C such that [, |f(z)|*dz < co. The vector space L*(R") is
a Hilbert space when endowed with the sesquilinear form

(f.9)= [ [(@)g(x)dz, VfgeL*R").
R’Il
Theorem 14.19. The Fourier transform extends uniquely to a unitary automorphism of
L*(R™). More precisely, the Fourier transform has a continuous extension F : L*(R™) —
L*(R™) with

IZ(F)lle = fllee Vf € L*R™),
(Z(f), F(9)) =(f.9) VfgeL*R").

Proof. By Exercise 14.20 and Theorem 14.15, we know that % : ¥ — . is continuous
with respect to the topology of L*(R™). Since .7 is dense in L*(R™), then .# admits a
unique continuous extension L?(R™) — L?(R™). The inverse of .# has the same properties,
and thus the extension of .Z is a continuous invertible linear operator.

We only need to show || Z(f)||2 = ||f||z2 for every f € .. Fix f € . and define

g(x) = f(—z). Notice that (&) = f(§); see also Exercise 14.8. Then:

12l = [ Fef@)ae

[by Exercise 14.8] = N F(©)g(e) de

" [ (re9 (@) de
= [ s © s

(132)

fxg(0)
— [ @D

= Ifllzz-
(]

Exercise 14.20. (Maybe this already appeared before). Show that & is dense in L?(R"™)
for all p € [1,00). Deduce that .# is dense in LP(R"™) for all p € [1, 00).

But then, show also that, if f; — foo in Z or ., then f; — foo in LP(R") for all
p € [1,00). O

§14.8. Schwartz distributions. The topological dual .7’ is the space of Schwartz dis-
tributions, or tempered distributions. The convergence of sequences in .7’ is pointwise,
that is, A, — Aso in .’ if and only if A,[¢] — Acs[@] for every ¢ € .7.

Exercise 14.21. Show that
92'>9" 568

Exercise 14.22. Show the following properties of tempered distributions:
(1) Ifu € &’ and @ € N”, then D%u € &',
(2) fu € & and f € C°(R") is such that, for all a € N*, D*f grows at most
polynomially at infinity, then fu € .7’
(3) fue . and f € &, thenux f € ..

O

Exercise 14.23. Show that, if A : R" — C is a measurable function that grows at most
polynomially, then f +— fR” h(z) f(z)dz defines a tempered distribution. %
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§14.9. The Fourier transform of tempered distributions. We define the Fourier
transform of a tempered distribution v € %’ as & = % (u), where

alff=ulf], Vfes.
Exercise 14.24. Show the following properties of the Fourier transform of tempered
distributions:
(1) Ifu € ¥, then 4 € 7.
(2) Ifu € . is actually in .7, ie., u[f] = [, u(z)f(z)dz for all f € .7, then @ as
distribution is equal to @ as function.
(3) F : — . is a continuous, invertible linear operator, with inverse .Z ~'u[f] =

ul 7~ (f)].
(4) fu € & and f € &, then
(134) F(ux f) =af.
(5) If f €.7’, then f € .%" and, for every o € N",
(135) F(Df) = (2mig)* 7 (f),
Z ((=2mix) f) = D*Z(f).
¢
Exercise 14.25. Compute % (do). O
Exercise 14.26. For a € R", compute .#(J,) and .Z (¢*®). Then compute .# ~*(J,) and

yfl(eia»z).

Solution. Using only definitions, we have, for all a € R" and ¢ € ., F(d.)[¢] =
0u[F @] = Fola) = [;n exp(—2mia - x)¢(x)de. This identity exactly means that, as
distributions over R", .#(d,) = exp(—2mia - z).

There is not much else to compute. Notice that Zdq.[¢] = 0.[Zd] = d(—a) = d_a[P)].
So,

F(0a) = exp(—2mia - ),
0 0 ="T0a = F(6a) = Fulexp(—2mia - z)),
Fu(e) =02,
(136) F 16, = exp(2mia - x),
ﬂfl(eiwz) _ Idoz-(eia»z) _ I&ﬁ _ 5,

Sk

O
Exercise 14.27. Compute .7 (1). O

Exercise 14.28. Compute .7 (p(z)), where p(z) = 3|, |< y Caz” is a polynomial of degree
N. - 0

Remark 14.29. It is a fact that, if @ has compact support, then wu is analytic, see [9,

Thm 7.1.14] It is a recurrent theme that regularity of w is proportional to integrability of

4 (and viceversa, of course). There are two sorts of “equilibrium points” of this behavior:

& and L*(R™).

§14.10. Applications to PDE: Harmonic polynomials. If u € .%’ is such that
—Au =0,

then

0= F(-ou) “F -3 @2nig))%a = 4n*¢a.
j=1
Therefore, spt(@) C {0}, that is, by Proposition 13.37, & = 7, <y caD%d0 for some
constants ¢, € C. It follows that w is a polynomial:
Proposition 14.30. Harmonic tempered distributions are harmonic polynomials.

Exercise 14.31. The condition |¢|?v = 0 implies spt(v) C {0}. Can you characterize the
distributions v € .%” that satisfy [£|*v = 07 O
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§14.11. Applications to PDE: Heat equation. See also [7, §4.A, p.143] and [5, p.192].
Let’s consider the heat equation

(137) u—Au=0 inR" x (0,+00),
u=g on R" x {0}.

where we can see u as a function [0, +00) = ./, and g € .%".
We apply the Fourier transform in the spatial variable, so that (137) becomes

vt — (2mi)2 €2 =0 in R™ x (0, 400),
U=g on R™ x {0}.
A solution to the ODE 8@ = —47?|¢|?a with @(0) = § is
a(t) = exp(—4r°[¢[*t)g.

Notice that, for each t > 0, & s exp(—4n?|€|*t) is an element of .#, so the 4(t) € .7’ Tt
follows that, for ¢ > 0,

u(t) = F¢ (exp(—4n’[€[*t)g)

(2 21 (exp(—4n(€ 1) « F(9)

(127) 1 _%
= @ e *g.

We have obtained again a representation formula for the solution of the heat equation,
as we did in Theorem 11.12.

§14.12. Applications to PDE: Wave equation. See also [7, §5.D, p.177] and [5,
p.194].
Let’s consider the wave equation
(138) u—NAu=0 in R™ x (0, +00),
u=g, Ou=h onR" x {0}.

where we can see u as a function [0, +00) — %', and g,h € .
We apply the Fourier transform in the spatial variable, so that (138) becomes

{a}a — @mi)2|¢Pa=0 inR™ x (0,+00),
a(0) = g &a(0) =h  on R x {0}.

A solution to the ODE 874 = —4r?|¢|*4 is

(t) = exp(2mi|€|t) A + exp(—2mi|¢|t) B.
The initial data @(0) = g and 8,4(0) = h, give

o exp(2milelt) (. h exp(—2mi|]t) [ . h
i) = 2 <g+ 27ri§> + 2 (g - 2m'|§|>

sin(2mi|€|t) 3
2milg]
These formulas give another representation for the solutions of the wave equation. Since

we know what they must be for n = 1,2, 3, then we know that u(t) must be as in §12.6,
§12.10 and §12.9, respectively.

=33

= cos(2mi|€|t)g +

Remark 14.32. Notice that the function £ — \?1I belongs to Li,.(R™) for n > 2. Since it
also decays at infinity, this function is a tempered distribution. So, it has a well defined
Fourier transform. You can try to compute it: I don’t know what it should be, or even if

there is a closed formula for it.
Exercise 14.33. Assuming g, h € ., write u(t) from the formula

sin(2mi||t) 3

a(t) = cos(2milE|t)g + 2mile]
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§14.13. Applications to PDE: Bessel potentials. (See [5, §4.3, p.191])

Exercise 14.34 (Bessel Potentials). Using the Fourier transform, give a representation
to the solutions of

—Au+u=f
Hint: See [5, §4.3, p.191]. O
§14.14. Applications to PDE: Eigenfunctions of the Laplacian.

Exercise 14.35 (Eigenfunctions of the Laplacian). Using the Fourier transform, give a
representation to the solutions of

—Au = Au,
for A € C. For which X there exists a solution? (see also §17.1) O
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Part 3. Sobolev Spaces
15. SOBOLEV SPACES

§15.1. Definition of sobolev space. Let Q@ C R™ open. We have seen in §13.5 that
functions u € Li.(Q) are distributions, and as such they have all derivatives D%u. We
are interested in those functions whose distributional derivatives are in fact integrable
functions.
For m € N and p € [1, +0o0], define

WP(Q) = {u € Li,(Q) : D*u € LP(Q) Ya € N" with |a| < m}.
Of these spaces, we also have a “loc” version:

WiP(Q) = {u € Line(Q) : Du € LY (Q) Va € N with |a| <m}.
§15.2. Sobolev spaces are Banach spaces. We endow W™?(Q) with the norm

lulwmoi) = llullwme = D IDull o).
[af<m
In fact, we may well take in place of ||u|lwm.p(q) other norms, such as
( Z ”DauHiI’(Q))l/qa for g € [17+OO)7 or

max [|D%ul[Lr(0)-
lal<m alsm

|
See Exercise 15.1.

Exercise 15.1. For z € RY and ¢ € [1,4+00), define

N
lzllg = QO l2;1")"?, and ||zl = max ;).

j=1
Show that for every g1, ¢z € [1,+00] there is L such that
1
7 lelle < llzllay < Lil2lgz-
Deduce that all norms on WP (Q)
( Z ||Dau‘|%p(9))1/q7 for q € [17+OO)7 or max |‘DauHLl‘7(£2)~

[a]<m
[a|<m

are biLipschitz equivalent to ||u||wm.»(q)- ¢

Lemma 15.2. Let Q@ C R™ be an open set and p € [1,00]. Let {u;j};en C LP(Q) be a
sequence of functions, and v,w € LP(Q). Fiz £ € {1,...,n}. Suppose that u; — v in
L?(Q) and that dyu; — w in LP(Q). Then 0w = w.

Proof. First of all, we claim that u; — v in 2'(Q2). Indeed, if ¢ € 2(Q), then

[ w@o@ds = [ v@ow | < [ us(e) = v@)lo(@)] da

Q
(Holder)
llws = vller@ 9l Lo () — O-

Therefore, as distributions, u; — v. It follows that deu; — dev in 2'(f), see Exer-
cise 13.15.

Since dpu; — w in LP(Q), we also have dpu; — w in 2’'(Q). Therefore, v = w, for
the uniqueness of the limit in 2'(Q). O

Proposition 15.3. The normed vector space (W™P(Q), | - [lwm.»()) is a Banach space.

Proof. The proof that ||-||wm.» ) is in fact a norm is left as an exercise, see Exercise 15.4.
To show that W™P () is complete, let {u;};en C W™P(Q) be a Cauchy sequence. It
follows that, for ever o € N™ with |a| < m, the sequence {D%u;};en C LP(Q2) is a Cauchy
sequence. Since LP(€)) are Banach spaces, it follows that there are u, € LP(Q) such that
D®u;j — uq in LP(2). Iterating Lemma 15.2, we obtaind that D*uy = ua, and thus uo,
the limit of w; in LP(Q), is the limit of u; in WP (Q). O

Exercise 15.4. Show that || - [|wm.»(q) is a norm on W™P (). O
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Exercise 15.5. Show that W™P(Q) is isometric to a closed subspace of LP(Q)Y, where
N =#{a e N":|a| <m}. O

Exercise 15.6. Inspired by Lemma 15.2, we can say with no doubt that, if u; — u in
W™P(Q), then u; — u in 2’'(Q2). We may wonder if the converse is also true, that is: is
it true that, if u; — v in 2'(Q) and v € W"P(Q), then u; — u in W™P(Q)? If this was
a video, you would pause it to think about the question yourself. However, this is not a
video: can you stop reading?

The answer is not hard. The point is to find a sequence of functions v; on R that
converge distributionally to 0, but have L” norm equal to 1. For instance, take v;(z) =
Ziz:o Na—i (mt1)2-3)(x). Then |v;] = Tjo 1y, and fR vipdx — 0 for every ¢ € Z(R)
(check it!). We have thus a sequence v; — 0 in 2'(R) with ||v;||zr = 1 for all j. Take
uj(z) = [*__ wvj(t)dt: check that u;(2) = 0. So, u; is an absolutely continuous function
R — R with compact support. Moreover, u; — 0 distributionally (check it!) but u; does
not converge to 0 in W' (R). So, the answer is no. %
Exercise 15.7. An example of weird Sobolev functions. For # € R, define ug : R" — R,

up(z) = |a|”.
(1) Show that ug € LY (R™) whenever 8 > —n.

loc

(2) Show that ug € WP (R™) for all § > 1 —n.
(3) Take an enumeration {gx }ren = Q"N B(0, 1) of points with rational coordinates inside

the unit ball. Define

ws(a) = 3“0
k=1

Notice that, since ug > 0, then wg(z) € [0,+00] is well defined for every z € R".

Show that, if 8 > 1 — n, then ws € W,2P(R™).
I want to remark that, if n > 2, then 1 — n < 0 and thus we can take 8 < 0: in these
cases, wg has a “pole” at every point in Q" N B(0,1). O

§15.3. Smooth approximation of Sobolev functions: characterization of Sobolev
spaces. We are going to prove the following theorem:

Theorem 15.8. Let Q C R”, p € [1,4+00) and m € N. A distribution u € 2'(Q2) belongs
to W™P(Q) if and only if there is a sequence {u;}jen C C<(Q) N W™P(Q) such that
lim; oo ||lu; — ullwm.r) = 0.

In other words, W™P(Q) is the closure of C*=(Q)NW™P(Q) in the norm || - ||wm.p(q)-
§15.4. Smooth approximation of Sobolev functions: local approximation by
convolution. Recall that we say that w € C*(Q) if there is an open set V C R
with Q@ C V, and there is a function @ € C™(V) such that @|o = w. Notice that, if
2 is bounded, then € is compact and thus, if w € C*°(2) then w € W™ (Q) for all
p € [1,+00] and m € N. We will show three approximation results

Theorem 15.9. Let Q C R™ open. Let {pc}eso be a standard family of mollifiers. For
€ > 0, define
Qe = {z € Q: dist(z,00) > €}
={z € Q: B(x,¢) CQ}
For u € L,.(Q), define uc : Qc — C, u. = u * p.; more precisely,
(139) ue = ((uln) * pe)la. -
Ifue WoP(Q) and V € Q is open, then ue — u in W™P(V).

loc

Proof. Recall that V' € € means that the closure of V' is compact and contained in 2.
Notice also that there is 6 > 0 such that V' C Q. for all € € (0,9). So, the convergence
“ue — u in W™P(V)” makes sense eventually for e — 0.

From Proposition 13.57, we already know that the functions u. defined in (139) converge
to ulp in 2'(R™) as € — 0. But be careful, this does not imply convergence in W™P(V),
see Exercise 15.6. We need some more work, and use some specific property of p..
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Since, for every o € N", we have D%u. = (D“u) * pe, we only need to show that, if u €

LY (), then ue — u in LP(V) for every V € 2. This is the content of Lemma 15.10. O

loc

Lemma 15.10. Let Q C R" be an open set and v € L}, (). If V € Q, then lim o ||uc —
ul|Lp(vy = 0, where uc is defined as in (139).

Proof. Let € > 0 be such that B(V,€) = |,y B(z,€) € Q. If x € V and € € (0,€), then

ue(r) = /B(O,e) u(z — y)pe(y) dy

- / u(z —y)pe(y)” - pe(y)' /P dy
B(0,¢€)

(Hslder) 1/p 1/
< / [u(z — y)|”pe(y) dy / pe(y) dy
B(0,¢) B(0,¢)
1/p
= </ [u(z —y)|” pe(y) dy) :
B(0,¢)

/V o) P da < /V / o [uE =)o) dyda
-/ . /V fu(z — 9)[P pe(y) dz dy

(140) < / |u(z)|? dz.
B(V,e)

Next, fix n > 0. By Theorem 3.1, there exists g € C(Q2) such that ||g — u||Lr(B(v,e)) < 7
For e € (0, €), we have

Therefore,

l[u = uellrvy < llu=glleev) + 19 = gellLrvy + llge = ellLrv)
(140) .
< g —ulleraviey + 119 = gelloe ()L™ (V) + llg = ullr B(v.e))
<2+ llg = gellLoe ()£ (V),
Since g is continuous and V' is compact, we know that ||g — gel/reo(vy — 0 as e — 0.
Therefore, there is € such that, if € € (0,€), then ||u — uc||zr(vy < 37. O

§15.5. Smooth approximation of Sobolev functions: interior approximation.

Lemma 15.11. Let Q C R"™ be an open set. Then there are a countable set A C Q and
r: AN — (0,00) such that
(15.11.a) for every x € A, B(z,2r:) C Q,
(15.11.b) Q C U ey B(x,72),
(15.11.c) for everyy € Q, #{xz € N :y € B(x,2r,)} < 2°" < 0.
Moreover, are also functions {¢q }oc. v such that, for each x € N, ¢ € CZ(B(z,73)),
0 < ¢s <1, and such that 3 , ¢=(y) =1 for every y € Q.

Proof. If Q = R", the proof is left as an exercise. Suppose that Q # R", that is, 9Q # 0.
Define 6 : Q — (0, 4+00), d(x) = dist(x, IQ), and, for k € Z,

Qe ={zecQ:2"<d(x) < 2"}
For each k € Z, let A4, C Q be a maximal 2k73-separated set, that is, a subset of Q
such that, if z,y € A%, then B(z,2872) N B(y,2*73) = 0, and for every z € Q, there is
x € N, with |z — 2| < 2-2F7% = 2872 The sets .4}, are countable, thus .4 = Urez % is
also countable. We claim that the set of points .4 with the radii r, = 28=2 for x € A}, is
the wanted set.
The requirement (15.11.a) is clear. It is also clear that

oc |J B@r)=J U B2,

zeN k€L xe N
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and thus (15.11.b).

We need to show the upper bound in (15.11.c). Let y € Q and set A(y) = {z € A4 :
y € B(z,2rz)}. Keep in mind that, if 2 € 4%, then r, = 2°72 and 2r, = 2""1. Let j € Z
such that y € Q;.

Notice that

(141) T € N = B(‘T7 2k71) C Q1 UQp U Qk+1.
Indeed, if z € B(x,257"), then

8(2) < 8(x) + 251 < 2T g oh T < oM R
6(z) > 6(x) — 21 > 28 — okt =9kt

From (141) we get that, if z € A% and y € B(z,2F7!), then k € {j — 1,5,j + 1}. Tt
follows that A(y) C Aj_1 U ;U Njq1.

We thus have that A(y) C B(y,29Y~!) = B(y,27), and that balls of radius 2774
centered at points of A(y) are pairwise disjoint. By Exercise 15.12, we conclude that

#A(y) < 2°".
The construction of the functions ¢, is left as an exercise. O

Exercise 15.12. Let j € Z. Show that, if A C B(0, 27) is such that, for every ai,as € A
distinct, B(a1,2’~*) N B(az,2’~%) = 0, then #A4 <2°". _

Hint: The union of the pairwise disjoint balls {B(a,2/7*)}4c4 is a subset of B(0,27),

so its volume... O

0

Exercise 15.13. Construct the functions ¢, in Lemma 15.11.
Theorem 15.14. Let Q C R™ open. If u € W*P(Q), then there is a sequence {u;}jen C
WFP(Q) N C>®(Q) such that u; — u in WHP(Q).

Proof. We use the following notation: if B is the ball B(z,r), then 2B is the ball B(x, 2r).
From Lemma 15.11, we get a partition of unity {¢¢}een and a countable family of balls

{Be}ren such that Q = (J,c Be, spt(¢e) C Be, and #{£ :y € 2B} < oo for all y € Q.
By Theorem 15.9, for every £ € N and k € N, there is ¢, > 0 such that the function

Uk, = (Peus) * pey,
is supported in 2B and ||uk,¢ — ¢eullwm.r(25,) < 12/—116 Define
U = Zuhz.
LeN

Notice that ur € C*®(Q), because each ug, is smooth and the sum is locally finite.
Moreover,

[lur — wllwm.p ) < Z lur,e — deullwm.pa)

¢eN
[because spt(uk,e — ¢peu) C 2By] = Z lur,e — deulwm.p2m,)
€eN
1/k 2
DL
€eN
Therefore, ur — w in W™P(Q). O

§15.6. Smooth approximation of Sobolev functions: global approximation. For
a proof of the following theorem, see [5, §5.3.3].

Theorem 15.15. Let Q C R™ open with OU of class C*. If u € W*P(Q), then there is a
sequence {u;}jen C WHP(Q) N C>®(Q) such that u; — u in WHP(Q).
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§15.7. The closure of smooth functions with compact support. Using Theo-
rem 3.1 and some smoothing, one can show that CZ°(Q) is dense in LP(2), see Exer-
cise 15.17 However, it is NOT true in general that CZ°(£2) is dense in W™P(Q).

Exercise 15.16. Show that, for every p € [1,00), the constant function u = 1 belongs to
WP((0,1)), but it is not the limit in W? of functions C°((0,1)). O

So, for Q C R™ open, m € N and p € [1,+0o0], we define
WP (Q) = {u € W™P(Q) : Hu,}jen C C7(Q) such that u; — u in W™P(Q)}.
Exercise 15.17. Show that C£°(Q) is dense in LP(Q). O
Theorem 15.18. For every m € N and p € [1,00), WJ"P(R") = W™P(R").

Proof. Given u € W™P(R"), we need to find a sequence {u;};jen C C°(R™) that con-
verges to u in W™P(R"™). By Theorem 15.14 and a diagonal argument, we can assume
u € C(R™).

Let ¢ : R™ — [0, 1] be a smooth function such that

B(0,1) C {¢ =1} Cspt(¢) C B(0,2).

For R > 0 and = € R", define (r(x) = ((z/R). Notice that, for every R > 0, 8 € N" and
r e R",

D Ca(@)] = |RTDA ¢/ B)] < o ID ¢l .

We shall approximate u with (ru as R — oco. Notice that, for R > 0 and o € N, we have

[et « « « « a—
HD u—D (§Ru)|\Lp(Rn) < ||D u — {RD U”Lp(Rn) + Z (/B) HDBCR .D BuHLp(IR’n)

BLla
1/p
(e}
</ D u(z)dz |+ D¢l g 1Dt
Since
lim |ID%u(z)|” dz = 0,

f=ee Jrr\B(0,R)
we conclude that limg o ||u — (rU||wm.p@n) = 0. O
§15.8. Sobolev inequalities: 1 < p < n.
Theorem 15.19. Letn > 2. Ifu € CI(R™),

n—1

(142) (/ ()| 7T dx)T < /R Vu(z)| de.

Proof. Let u € CY(R™). For j € {1,...,n}, x € R™ and y € R we denote by u(z|y) the
evaluation u(z|;y) = u(z1,...,2j-1,Y,Tj+1,-..,Zn). Notice that, for every x € R™ and
1

je{l,...,n},
z;
m):/ Oju(z|;y;) dy;-.

(143)  |u(@ f[ (1 |9u( wby])\dy])j < : (A\Vu(m|jyj)|dyj> L

j=1 J

Therefore, for every x € R",

We claim that, for each ¢ € {1,...,n}, we have
(144)
n 1

_£ 1
n n—1 n—1
lu(z)[*=T dz<e < (/ IVU(x)Idxgz) [ ] </ /IVU(xljyj)ldyj dfﬂge) :
RY R ; R¢ JR

j=£+1
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where dz<, = dz1--- dze. To prove (144) for £ = 1, we integrate (143) in z1:

[ futa)| 7T day

(143) n n—1
/H (/ [Vu(z|;y;) |dy]) dx,
R 1 n 1
n—1
-(/ |Vu<x\1y1>\dy1) IL( [ ivutebwlan ) o
R i
(General Holder) L n i1
< (/ [Vu(x |dx1) H (/ / |Vu(z|;y;)| dy; dxl) .
R ics

Next, given (144) for £ = k € {1,...,n — 1}, we prove the same for £ = k + 1 integrating
in Trt1:

[ [ @l aredas,
R JRE
1
(144) 1
< /(/ |VU(1’)|dCL’§k> (/ /|Vu z|;y;) |dy1d$<k) ATkt
® R j=k+1
1—1
- (/ /\Vu Tlk+1Yr+1)] dyr+1 d$<k) X
.
x/(/ \Vu(:v)|d:v§k) (/ /|Vu x|5y;)| dy; d$<k) dpr
r \Jrk o

(General Hélder) ﬁ
< (/ / IVu(@|kt1ye+1)| Ayt dﬂ?ﬁc) x
RE JR

1
=1
([ \Vu<m>|dmgkdxk+1) (/ [, [Ivutsimlan dra o)
R JRK RF

which gives (144) for £ = k + 1.
Finally, notice that (144) for ¢ = n is (142). O

j=k+2

Corollary 15.20. Let n > 2. Then (142) holds for all u € W(R™).

Proof. Let u € WH!(R™). By Theorem 15.18, there is a sequence {u;};en C C2(R™) such
that u; — w in W' (R™). Notice that,

(% V(s = ur)llpr < [lug = ullwr

Therefore, {u;}; is a Cauchy sequence in L7~ (R™). Since u; — u in L' already, then wu;
must converge to u in L»—1 (R"™) too. We conclude that

] (142)
lull g = lim [l oy < lim [[Vgllgn = [V .

L
O
Exercise 15.21. In Theorem 15.19 we required n > 2. What happens when n =17 {

§15.9. A remark on the isoperimetric inequality. The inequality (142) has a geo-
metric meaning: it is indeed equivalent to the isoperimetric inequality. More precisely,
the characteristic function 1g of a measurable £ C R™ belongs to Li,.(R™) and thus it
defines a distribution: 1z € 2'(R™). Define the perimeter of E as the total variation of
DF, that is,

Per(E) = sup{) _ 9;1u[¢;] : ; € 2, |¢sllL= < 1}.

Jj=1
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In order to put this formula into perspective, we define for u € 9’

IDu|(R") = sup{) _ d;ul¢;] : ¢; € 2, |[ds]lr= < 1} € [0, 400].
j=1
It is clear that |Du|(R™) < oo if and only if |Du| is a Radon measure, as seen in Proposi-
tion 13.12. In this case, we say that u has bounded variation. The space of functions with
bounded variation, BV functions for short, is

BV(R") = {u € L'(R") : |Du|(R") < co}.

If u e CZ(R"), then [Du|(R™) = [, |[Vu|dz. One can show that (142) extends to BV
functions: if u € BV(R™), then

(145) ||u\|LL < |Dul|(R™).

n—1 —

The proof is by smooth approximation, similarly to the proof of Corollary 15.20. If we
apply (145) to 1g, we get

(146) |EI"% < Per(E),

where |E| is the volume of E. This is the isoperimetric inequality in R™. Equality in (146)
is attained only when E is an Euclidean ball.

In fact, one can show that from (146), using the coarea inequality one can get (142)
for u € C}(R™).

§15.10. Gagliardo—Nirenberg—Sobolev inequality. The Sobolev conjugate of p €
[1,n) is the number p* such that
1 1 1 . 1
— — — = —, or, equivalently, — =
p p n p

1
-

SR

In other words,

Notice that, (142) is (147) for p = 1.

Theorem 15.22 (Gagliardo—Nirenberg—Sobolev inequality). Let n > 2 and p € [1,n)
with Sobolev conjugate p* = n"—f;;. There exists C € R such that, for all u € CH(R™),

(147) llull o= ®n) < ClVulle@n)-

p(n=1) _ p*

In fact, we can take C = B= .
n—p

Proof. If p =1, then (147) is (142). Therefore, we assume p > 1.
Fix u € CL(R™). Let v > 1 and set v = |u|”. By Exercise 15.23, v € C(R™). Therefore,
by Corollary 15.20, we have

1

n— n—1
(fopre=a) ™ = ([ ora) "

(142)

< / |[Vo(x)|de
RTZ
= / "} Vu(z)| de
Rﬂ,
P

—1
(Hélder) = 1/p
< 7 (/ \u|p%1<“’71) dx) ! (/ [Vu(z)|? dw) .

We want y—"5 = p%l(fy —1), that is vy = ”(:7:;). Notice that, if p € (1,n), then v > 1. If
u = 0, then (147) trivially holds. So, we can assume u # 0, and thus the above estimates,
with this v, gives

n—1 p—1

n T 1/p
(/ Ju|Y 71 dx) <~ (/ [Vu(z)|? dx) .
n R’IL

A direct computations gives y-"5 = p* and "T_l - prl = p%. So, we have (147). O



92 NICOLUSSI GOLO

Exercise 15.23. Show that, if u € C2(R™) and vy > 1, then |u|” € C}(R™) and V(|u|?) =
Flul "t V.

Hint: on the set {u # 0}, there the statement is trivial. What remains to show is that,
if u(z) = 0, then |u|” is differentiable at « with derivative equal to 0. O

Corollary 15.24. Letn > 2 and p € [1,n) with Sobolev conjugate p* = ;*=-. Then (147)
holds for all u € WP(R™).

Proof. Let u € WHP(R™). By Theorem 15.18, there is a sequence {u;};en C C2(R™) such
that w; — w in W"?(R™). Notice that,

(147
luj —ukllpos < IV — ur)lle < fluj — ullwie.

Therefore, {u;}; is a Cauchy sequence in L? (R"). Since u; — u in L' already, then u;
must converge to u in L? (R") too. We conclude that

(147)
lullppr = Im flu;f| e < lm [|V]oe = [[Vul|ze.
j—o0 j—o0

15.11. Sobolev inequalities: n < p < co. Morrey’s inequality.
q p y q y

Theorem 15.25 (Morrey’s inequality). Let n > 2 and p € (n,00). There is C € R™ such
that, for every o € R, R > 0 and u € W P(B(0,4R)), and for two every Lebesgue points
z,y € B(o,R) of u (thus, for a.e. z,y € B(o,R)),

(148) lu(@) — u(y)| < Clz —yI"""?IVull Lo (B(oar)) -

In particular, if @ C R™ is open, then every u € W,2P(Q) has a locally (1 — n/p)-Hélder

loc
continuous representative.
p=1 p=1
The constant C, which depends onp and n, can be taken to be C' = Zwin)lp (;’_;i) P

We shall prove Theorem 15.25 after a few intermediate statements.
Proposition 15.26. For every n > 2 there is C € R such that, for every u € C*(R™),
every x € R™ and every r > 0,

(149) ]{9( : u(y) —u(z)[dy < C Vulwll

B(z,r) |y - x|n71

The constant C' can be taken equal to C =

Proof.

wnpn '’

/B(xm) [u(y) — u(z)|dy = /0 ~/63(ac,s) [u(y) — u(z)|dS(y) ds

= / / lu(z + sz) — u(z)|s" ' dS(z)ds
o JoaB(o,1)

0 /83(0,1)
a
/ Vul@y) dys"fl ds
B

§/ / |Vul(z + s2) dts™ " dS(z) ds
0,1)
/ (z,s) |y7‘,1"|n !

/ / Vul(y) T dys"f1 ds
B(z,r) |y - m‘n

v,
" JB(z,r) |y_x|n

Since the volume of B(z, ) is w,r™, then we obtain (149) with C =

/‘ Vu(z + 52) - zdt| s" " dS(z) ds

|Vul(x + s2)

U dS(2)dts™ s

o
),

aB(0,1)

wpn '
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Exercise 15.27. Compute left and right hand sides of (149) for u(y) = |y|. O

Remark 15.28. Proposition 15.26 is important because the integral kernel in the right-
hand side of (149) is the famous Riesz potential.

Exercise 15.29. Show that, for every n > 2, for every u € C*(R"), every € R" and
every r > 0,

U dy —u(z)| < U —u(z)| dy.
]{W) (v) dy ()-;{B(muy) (@) dy

Solution. Since fB(z »y dy =1, we have

][ u(y) dy — u(z)
B(z,r)

][ (uly) — u(z)) dy
B(x,r)

< ]{3 ) @)
0

Proposition 15.30. For every n > 2 and p € (n,+00), there is C(p,n) € R such that,
for every u € C*(R™), every x € R™ and every r > 0,

(150) foo 1)~ @y < O [V ulanoe
B(z,r
N p—1
The constant C(p,n) can be taken equal to C(p,n) = (nwnp)” » (%) P

Proof. We simply apply the Holder inequality to (149):

(149) 1 YVu
][ lu(y) — u(@)|dy < / AVl
B(z,r) WnT B(z,r) ‘y - "L‘|

1 p=1
(Holder) 1 P 1 P
< [ovewra) ([ ]
WnT B(z,r) B(x,r) |y — a?l p—1

Notice that, using polar coordinates,

1 " 1
———dy = nw Sn_lids
/B(:c,'r) |y—$|(n71>ﬁ Y A n S(nfl)ﬁ

T n-1
= nwn s p-1ds
0

p—1 p=n
= NWp———7rpr-1,
p—n

where p > n ensures that —Zf_i > —1 and thus that the above integral is finite. Therefore,

1 pT N
— P —n
/ = W) = <"wnpf> r
B(z,r) |y—1’| p—1 p—n

p—1 p—1

from which we conclude (149) with C(p,n) = (nwn)pTTl_l (E) P = (nwn)_% (”—_1) .

p—n p—n
Finally, since We have obtained

Remark 15.31. For W C R™ bounded and with positive volume, and u € Li,.(R™),

define
uw = % u\y dl/ / dy7

where |[W| = Z"(W) is the volume of W. In the proof of Proposition 15.33, we will
use an idea that is worth to keep in mind and understand correctly. Suppose we have
two points z,z € R"™ with r = |z — 2|, and set W = B(z,r) N B(z,r). Clearly we have
fu(@) — u(2)] < Ju(@) — uw| + [uw —u(2)] < fiy luly) — ul@) | dy + fy, [uly) —u(z)] dy. We
now do the following;:

B
£ 1t =~ ut@ldy = EE ot [ uty)  u(ol
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1B 1

< o e lu(y) — u(z)|dy
|W| |B(CC,7’)‘ B(z,r)
|B(z,r)|
= lu(y) — u(z)| dy.
|W| B(z,r)
Now we have that IB‘(;,P‘ = ‘B(Jégz;)(lz -7 is & constant that depends only on n. Apart of

computing it explicitely, see Exercise 15.32, we can convince ourselves that it is a constant
because, clearly, for every v € R®, A > 0 and O € 0(n),

Ba+on  _ B@l_ |BOz)]
|B(z +v,7) N B(z +v,7)| |B(z,\r)NB(z,Ar)] |B(Oz,r)N B(Oz,r)|
|B(z,r)| [BO,D)]

S0, [BamABM = 1BO.DAB(er D"
|B(z,m)|

Exercise 15.32. Compute BeRBGET
Solution. First check that B(0,1) N B(e1,1) = {(y1,%") € R™ : 1 € (0,1), ¢ €

R™ 1 |y|? < i, |v'|? < 1—yi}. Then check |[B(0,1)NB(e1,1)| = 2f1/2 Wnoy Hdy =
Wy — |B(z,7)| |B(0,1)] _ nwp2™ !
o=t~ Finally, [B(z,r)nB(zm)] _ 1BO,DNBler,1)] —  wn_1 " 0

Proposition 15.33 (Morrey’s inequality for smooth functions). For every n > 2 and
p > n, there is C € R such that, for every o € R, R >0 and u € C*(B(0,3R)),
(151)  VayeBo,R)  |u(@) —u(y)l < Clz =y Vull o 5om))-

p=1 p=1
The constant C, which depends on p and n, can be taken to be C' = 2(nwn) P (E) P

Wn—1 p—n

Proof. Let 2,y € B(o,R), and set r = |z —y| < 2R and W = B(z,r) N B(y, ). Using the

argument described in Remark 15.31, with constant C' = |B(O|ﬁ<r:)§()e|1 o7 = "“;’;21_1 (see
Exercise 15.32 for the explicit value of C'),
lu(z) —u(y)| < u(z) —uw|+ [uw —uly
][ lu(z) — u(z |dz+f lu(z) — u(y)| dz
<Of ) -u@lde+CfJue) - ()l d:
x,r B(y,r)
(150)

< CCp,n)r' 7 [Vull Lo (sar) + CCEm) ™ P [Vl 1o (5.
*) i
< 2CC(p,n)lz =yl ~ 7 |VullLe((o,3R))-

In (*) we have used that B(z,r) C B(z,2R) C B(o,3R). Since C(p,n) = (nwn)7% (E) o

p=1 p=1
2CC(p,n) = 2" (nwy) ¥ (5—1> P

Wn—1 —n

Remark 15.34. The constant we have found is not necessarily optimal. Finding optimal
constants in Sobolev inequalities may be quite tricky. See Remark 15.35 for another
constant.

Remark 15.35. The proof presented here has been taken from Evans [5, §5.6.2]. Parvi-
ainen in [Parviainen| proves Proposition 15.33 with a slightly different approach. First,
they don’t go through the Riesz potential as in Proposition 15.26. Second, they use cubes
instead of balls. Third, the constant they get in (151) is C = ;@.

n

Exercise 15.36. For n > 2 and p > n, which of these constants is better in Morrey’s
inequality?

p—1 p—1
an Tl (21T
p

Wn—1 —n
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Exercise 15.37. Recall that a point € R™ is a Lebesgue point of u € Li, (R™) if
lim lu(y) — u(z)|dy = 0.
r—0 B(z,r)

Recall also that, if u € L (R™), then almost every € R" is a Lebesgue point of u; see
[8, Theorem (3.20), p.93].

Let {pc}e>o0 be a family of standard mollifiers on R™. For u € Li,.(R™), set uc = u*pe €
C*(R"™). Show that

(152) Vz € R™ Lebesgue point of v, liI’I(l) ue(z) = u(x).
€e—
Note that here we do not consider u “up to a set of measure zero”, but really a fixed

function v : R" — C.
Solution. Notice that, for every y € R", |pe(y)| =

spt(pe) C B(0,€). Therefore,

% < Hpﬂiﬁm. Recall also that

|ue(z) — u(z)] =

u(x — «(y)dy — u(x «(y) d
/BW)< W)pe(y) dy <>/ pe(y) dy

B(x,¢)

< /B e =) @l ) ay

en

< W/ fu(z — ) — u(x)] dy
B(z,e€)

- ||p||mownf lu(z — y) — u(z)| dy.
B(z,€)

Therefore, if x is a Lebesgeue point of u, then lim, ue(z) = u(z).
See [8, Theorem 8.15] for a more general statement (for mollifications that do not have
compact support). O

Proof of Theorem 15.25: Morrey’s inequality for Sobolev functions. Let u € W (B(o0,4R))
and z,y € B(o, R) be two Lebesgue points of u.

Let {pe}eso be a family of standard mollifiers on R™ and denote by ue = u * p. €
C*°(R™). By Exercise 15.37, by the Morrey’s inequality for smooth functions 15.33, and
by standard properties of mollifiers, we have

u(@) — u(y)] "2 lim fuc(@) — ue(y)|

e—0

(151) 1—n/p
< lim sup Clz -yl IVuell L (B(o,3R))
€E—

=Clz—y|""? tim sup [|(Vu)elLr (5(0.8))
e—

(110

110)
<

Cle — y|"~ P Vull Lo (B(o,ar))-

In the last step we use Young’s inequality (_11()) as follows: if e < R, then there is a
cut-off function ¢ € C°(B(0,4R) such that B(o,3R+¢€) C {¢( =1} and 0 < { < 1. Then
((Vu)e = (Vu)e in B(o,3R). So,
I(VW)ellLr(Bosr)) = (CVU)ellLr(Biosry) < I(CVU)ellLr@n)
= [lpe * (CVU)l|Lr@n) < [lpe * [CVul[|Lr@n)

(110)
< lpellpr @y ICVullLe@ey < (IVullLe(B(o,ar))-

O

Exercise 15.38. Let n > 2 and Q@ C R" open. Show that, if u € W_2P(Q) for some
m > 1 and p > n, then w € C™ 1 (Q). In particular, show that, for every p > n,

(] WP () = C™=(Q).

m>1
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§15.12. Difference quotients. Let Q C R™ open. For € > 0, define
Qe = {z € Q:dist(z,00) > ¢} = {x € Q: B(z,e) C Q}.
Foru:Q —C,je{l,...,n} and h # 0, define A?U:QW — C as

Alu(z) = u(z + he;) — u(x) ’
h
where e; is the j-th element of the standard basis of R".

Exercise 15.39. Let Q C R" open and h # 0. Show that, if u,v : Q — C, then, for every
je{l,...,n} and x € Q,
(153) A? (uwv)(x) = Alu(z)v(z + hej) + u(z)A?v(w)

J

Exercise 15.40. Let Q C R™ open and h # 0. Show that, if u,v : Q@ — C and spt(v) C
Qp|, then, for every j € {1,...,n},

(154) / A?u(;r:)v(x) dz = —/ u(x)Aj_hv(a:) dz.

Q Q
Notice that, since spt(v) C Q)p|, we have: first, if = € spt(v), then x + he; € ; second, if
x € spt(A;hv), then z € spt(v) or « — he; € spt(v), which implies « € . O

Exercise 15.41. Let @ C R" open and j € {1,...,n}. Show that, if ¢ € C1(Q), then
. h
(155) lim [[A7¢ = 0;ll Lo (@) = 0.
0

Exercise 15.42. Let Q C R"™ open. Show that, if u € L (Q), then, for every j €
{1,...,n} and every ¢ € C(9),

(156) lim [ Afu(z)g(z) de = 0;ulg],
=0 Jq
where we see u € 2'(Q) as a distribution with distributional derivative d;u € 2’(Q2). In
other words, Afu — 9;u in ().
Solution. Fix u, j and ¢. Since spt(¢) is compact, there is € > 0 so that ¢ € C° ().
Since spt(¢) € (e, then there is § > 0 such that B(spt(¢),d) = U, cqpi(p) B(@,6) € Qe.
Therefore,

lim sup
h—0

/Q Alu(z)d(x) dz — ajum‘

D imsup |- [ o) do+ [ u)so) ds
Q Q

h—0

< limsup/ lu(x)] - | — A;h¢($) + 0jp(x)| dx
ho Ja

(Hélder) . _h
< hlilsblp lullr(espece)oy) - | = A5 " (@) + 0;0(2)[ Lo (o)
—
a9
O
Proposition 15.43. Let Q C R™ be an open set and p € (1,4+00]. For every u € LP(Q)
and j € {1,...,n}, the following are equivalent:

(1) dju € LP(Q);
(i) there exists C € R such that, for every e >0, limsup,_,q [|A"u||pr.) < C.
Moreover, for every e > 0 and h with |h| <€,

(157) 1A ul|Lr o) < 11051l (-
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Proof. ‘ (1) = (i7): case p € (1,00). ‘Let u € CH(Q)and e > 0. For |h| < eand p € [1, +0o0],

we have
/ ‘Ahu(mﬂp dz = / —u(x + hej) — u(@)|” dz
a. Q. h
(163) B P
= 8ju(x + the;)dt| dz

(Hiilder)
(158) < / / |0;u(z + the;)|” dt d

// |0;u(z + the;)|” dz dt
Qe

// |0ju(2)[” de dt = / |0;u(z)|? dz.

e—|h| Qc_|n

We have shown (157) for smooth functions. Next, let v € L?(Q2) with dju € LP(Q).
Let {py}n>0 be a standard family of mollifiers and define ur = u * p1/; : Q1,5 — C. For
1/k < € —|h|, we have Qc C Q._j5| C Q4,5 and thus, from (158),

(159) /s | Ay ()| do S/ |05uk(z)|” dz.

Qe n|

Moreover, we know that up — u and djur — Oju in LP(Q._|)). We thus have, for |h| < e,

P 1/p
dw)
P 1/p
) ([
Qe

Therefore, for each h # 0 with |h| < € fixed, Afur — Aluin LP(Q._p,|) as k — oo. This
convergence allows us to extend the estimate (159) to the limit. We obtain (157) and
thus (ii).

‘ (1) = (i1): case p = oo. ‘ Let u € C*(Q) and € > 0. For |h| < € and = € ., we have

ATk — Afull oo,
_ (/ ug(z + hej) —ur(xz)  ulz + hej) —u(z)
Qe

(Minkowski)
<
Qe

h h
2
< EHuk - uHLp(Qe—\M)'

uk(z + he;) — u(x + hey)
h

sup [Alu(z)| = sup |UEFRe) — u(@)

€N, €0 h
1 . hes
(160) = sup | [ Y@t they) -he, dt‘
€N h
< sup [0ju(z)| = [|05ull Lo (0)-
€N

We have shown (157) for smooth functions. Next, let u € L*°(Q) with d;u € L*™(Q).
Like in the previous case, define ur = u * p1/5 : Q1 — C, so that uy € Cl(Ql/k). For
1/k < € — |h|, we have Q. C Qc_jp| C Qyyp. [-]

Using Exercise 15.45, we have that, for fixed h and j, there is a full measure set
E C Qc_p|, such that, for every x € E, we have limg_, oo ux(z) = u(z), and limy o ur(z+
he;) = u(x + he;). Moreover, [|0juk||L (0, ) < |9jullL= (). Therefore, for every x € E,

u(x + hej) — u(x)
h

ug(x + he;) — ug(x)
h

A u(z)]

lim

k—oo

160)
< 11msup||ajUk||Loo(Ql/k)
k— oo

< 9jull Lo (-
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We obtain (157) and thus (ii) for p = oo too.
(13) = (7). | Fix e > 0. If p € (1,+400), then LP(Q) is the dual of LPI(QE), where

p = 2. If p = oo, then the same is true with p’ = 1.

Since limsup,_, [|A%ul|rro,) < C < oo, we can apply the Banach-Alaoglu Theo-

rem 15.46. Therefore, there is a sequence {hx}ren C (0,€) with limg_, oo hx = 0 and there
is ve € LP(£¢) such that

(161) [vellr ) < C

and, for every ¢ € LPI(Q),

(162) lim A?ku(x)qb(x) dx :/ ve(z)o(x) dz.
k— o0 Qe Q.

In particular, C°(Q.) C Lp/(Qe). Combining (156) with (162), we get ve = Oju, that
is, the distributional derivative d;u of u on 2. is in fact a function in LP ().

By the locality of distirbutions, we obtain that J;u is a function on € that satisfies,
by (161), ||05ul|Lr(q.) < C for all € > 0. Therefore, ||0ul|Lr) < C. O

Recall that the dual of L* is L°°, although the dual of L* is not L*

Exercise 15.44. Suppose u € C'(Q), z € Q, v € R" such that 2 +tv € Q for all t € [0, 1].
Then
1
(163) u(z +v) —u(z) = / Vu(z + tv) - vdt.
0

O

Exercise 15.45. Let Q C R™, {p,},>0 a standard family of mollifiers, and v € L{,.(€).
Define ue = u * pe : Qe — C. Show that, for every z € €,
ue(®) < flullLoe (Ba,e)-

Moreover, for almost every x € €, limc_,0 ue(z) = u(z).
Find an example where v € L>(€) but, for every h > 0, liminfc .o [Jue — |/ Lo (q,) > 0.
Hint for the example. Take Q = (—1,1) C R (or Q@ =R), and u = Ig 1)...

Theorem 15.46 (Banach—Alaoglu Theorem). Let (V.| - ||) be a normed space, and let
(V' - |l+) be the dual space endowed with the operator norm

loll. = supfala] :z €V, 2] <1},  VaeV
If {ar}ren C V' is a bounded sequence, that is, sup,cy ||akll« < oo, then there ezists a
unique oo € V' which is the weak* limit of ax, that is ar — oee. More explicitly, for
everyx €V,
lim aiz] = acolx].
k—oo
Moreover,

|ctoo ||+ < liminf ||ak ||«
k— o0

Proof. See https://en.wikipedia.org/wiki/Banach\T1\textendashAlaoglu_theorem .
O

Theorem 15.47 (Characterization of Sobolev spaces with differential quotients). Let
Q C R™ be an open set and u € L (). For every p € (1,400], the following are
equivalent
(i) v e WhP(Q);
(i) u € LP(Q2) and there exists C > 0 such that, for every j € {1,...,n} and every
€ >0, limsup,_,, ||A}ul|Lra.) < C.

Proof. This is a direct consequence of Proposition 15.43. O
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§15.13. Differentiability a.e. for n < p < co. For 2 C R" open, a function v :  — C
is differentiable at x € Q if there exists a linear function o : R™ — C such that

oo ly — =

If u is differentiable at x, the linear function « in (164) is unique and is of the form
aly —z] = Vau(z) - (y — z) for a vector Vyu(xz) € C". We call this vector Vu(z) the
classical gradient of u at x. If w is C*, then it is clear that Vqu(z) = Vu(z) for every
x, where Vu(z) is the gradient we have used so far. When u € Li,.(Q), then we have a
distributional gradient Vu € 2’(Q)", which may be an element of L?(f2) in the case of
Sobolev functions, but we don’t know a priori that Vu(z) = Vo u(z).

In fact, it can be that v € W'P(Q) is not differentiable anywhere. Indeed, recall from
your course in Analysis, or simply prove it from (164), that if u is differentiable at x, then
u is continuous at x. It follows that the function constructed in Exercise 15.7, which is
nowhere continuous, is nowhere differentiable although it has a weak gradient in LP.

Theorem 15.48. Letn > 2 and p € (n,+o0]. If Q C R™ is open and u € I/Vlicp(ﬂ), then,
for almost every x € Q, u is differentiable at x and Vu(z) = Vqu(z).

Proof. First, assume p € (n,+00). By Theorem 15.25, we can assume u continuous. By
Exercise 15.49, for almost every x € ), we have

(165) lim [Vu(y) — Vu(z)P dz = 0.
r—0 B(z,r)
Let « € Q be a point with (165). Let R > 0 be such that B(z,4R) € Q. Define
v: B(z,4R) — C by
v(y) = uy) —u(z) = Vu(z) - (y —z),  Vye B(z,4R).

Clearly, we have v € W'?(B(x,4R))NC°(B(z,4R)) and Vu(y) = Vu(y) — Vu(z). There-
fore, applying Theorem 15.25 to v, we obtain for every y € B(z, R),

|uly) — u(z) — Vu(z) - (y —2)| _ [v(y) - v(=)|

|z — 1yl [z — y]
(

148) T
< Clz =yl ? IVuly) — V(@) e (B(o,4R))

1/n n/p %
—o ¥ AR ][ [Vu — Vu(z)|Pde | .
|z — yl B(x,4R)

If we take R = |z — y|, this estimate combined with (165), gives
Lo () ue) ~ Vu(e) ()| _
v |z =yl ’
that is, Vu(z) = Vau(z).
Finally, if p = oo, then we clearly have W2 (Q) € WLP(Q) for all p € (n,00). So, we
apply the result we have just proven. O

Exercise 15.49 (A variant of Lebesgue differentiation theorem). Let Q@ C R™ open. Show
that, if f € LP(Q), then for almost every z € Q we have

lim |f(y) = f(@)|" dy = 0.
r—0 B(z,r)

Solution. Look at [13, §1.5.7&8§1.1.8]. It can be proven for f € LP(u) with (X,d, u) a
doubling metric measure space. O

§15.14. p = oco: Lipschitz functions. Let 2 C R" open. A function v : Q@ — C is
L-Lipschitz for some L € R if

Vo,y €Q,  |u(z) —u(y)| < Lz —yl.
Lipschitz functions are clearly continuous

Theorem 15.50. Let Q C R™ open and convex. For every u € L*(Q) and L € R, the
following are equivalent
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(i) w has a L-Lipschitz representative, in the sense that, for almost every x,y € Q,
lu(z) —u(y)| < Llz —yl;
(i) uw € Wh(Q) and IVl ooy < L.

As as consequence, if u € W (Q), then u is || Vu|| g (q)-Lipschitz.

Proof. | (i) = (it). | If uw: Q@ — C is L-Lipschitz, then, for every z € Q, j € {1,...,n} and
h # 0 with |h| < dist(z, 89),

|Alu(z)| = w <L
Therefore, by Theorem 15.47, we obtain u € W (). Moreover, using also Proposi-
tion 15.43, we have, for almost every x € €,

|[Vu(z)| < max{|0;u(z)|:j€{1,...,n}} < L.

SO7 ||Vu||Loo(Q) S L.
(i) = (i).| We can use Morrey’s inequality, Theorem 15.25, to show that if u €

W (Q) then u is Lipschitz. We just need to notice that u € WP (B) for every B €
and p € (n,00). Then, we take the limit p — oo in (148), where the constant C' = C(p, n)
remains bounded. However, in this way it is not evident that u is || Vu|| g (q)-Lipschitz.

So, we can apply another argument, just by usual mollification. One easily sees that
Ue = u* pe € C*(Q) is a smooth function with |Vuc(z)| < [|[Vu|| o) for every z € Q..
Since u. is smooth, we can estimate for every z,y € (Q, using convexity,

1
/ Vuo(z + ty —2)) - (y — 2) dt| < [|Vull g eyl — ]
0

|ue (@) — uc(y)| =
Since u. — u uniformly on compact sets, then lime_,o |uec(z) — ue(y)| = Ju(z) —u(y)]. O

Exercise 15.51. In Theorem 15.50 we used convexity of the set Q2. Give an example of
open set €2 that is connected but not convex where Theorem 15.50 fails. What can we say
in any case? O

Theorem 15.52 (Rademacher Theorem). If Q@ C R™ is an open set and u : Q@ — C is
Lipschitz, then u is differentiable almost every where in €.

Proof. This is a consequence of Theorem 15.50 and Theorem 15.48. O

§15.15. Compactness theorems: Ascoli—Arzela. One of our main tools to prove
compactness is the following standard result

Theorem 15.53 (Ascoli-Arzeld). Let K be a compact metric space and F = { fx }ren C
C(K) be a sequence of continuous functions K — C. Suppose that

(1) F is (equi)bounded, that is, there is C' such that |f(z)| < C for all f € F and all
e K.

(2) F is equicontinuos, that is, for every e > 0 there exists & > 0 such that, if v,y € K
and d(z,y) < 6, then |f(z) — f(y)| < e for all f € F.

Then there exists a subsequence { fx; }jen C F that converges uniformly on K.

§15.16. Compactness theorems: Rellich—Kondrachov for Wol’p (R™). Recall that a
linear operator L : A — B between Banach spaces is compact if it maps bounded subsets
of A to pre-compact subsets of B. In other words, L is a compact operator if, for every
bounded sequence {ax}ren C A, there is a subsequence {Lay, }jen converging in B. We
shall prove that for certain p and ¢, the “identity map” Wol’p(Q) — L?(Q) is a compact
linear operator.

Remark 15.54. The proof is taken from [5, §5.5.7]. For a similar proof, see [3, Theorem
4.26]. For more general statements, see [1, Theorem 6.3].
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Lemma 15.55. Let n > 1 and {pc}te>o be a standard family of mollifiers. Let u €
Wl’l(]R") and define ue = u * p.. For every Q C R™, we have

loc

(166) /Q |ue(z) — u(x)|dz < E/B(Q : |Vu|(z) dz,

where, we recall, B(Q,¢) =J B(z,€).

zeQ

Proof. First, assume u € C'(R™). Notice that, for every x € R™,

[ owtate =) - e

|ue(z) = u(z)| =

/R" pe(y) /1 Vu(z — ty) - (—y)dt dy’

0

1
< / / pe(®)|Vul(z — ty)ly| dt dy
rn Jo

spt(pe) € BO.O < [ / pe()Vul(z — ty) dt dy.

Therefore,
1
/ e () — u(a) | d < e / / / pe()|Vul(z — ty) dt dy dz
Q Q nJo

<. /Olpe<y> ([ 1vulta =ty ac) avay
<e / ) / pelw) didy < /B o PulE =) dz)

:e/ |[Vu|(z — ty) dz.
B(Q,€)

Second, consider u € W,\!(R™) arbitrary. For every n € (0,1), we have (166) for the
smooth function u,. On the one hand, since (uy)e = (u * py) * pe = (u * pe) * py, we have
. . (27)
Him () — il 1) = Jim e () — Wl ey 2 @) = .

On the other hand,

. (??)
},ILI})HV“’?”LWB(m» = [[VullLy(s@.e)-
Therefore, we obtain (166) for u too. O

Exercise 15.56. Extend (166) of Lemma 15.55 to all u € W1 (R™). What can we say
for u € Wy (), when Q C R™ is open. O

Lemma 15.57 (Interpolation inequality for LP norms). Let 1 < p < ¢ < r < o0 and
0 € [0,1] such that
1 6 1-6
(167) - =—-+ .
q p r
Then, whenever p is a measure and u is p-measurable function,

(168) lull aguy < lallZo gy - el (y-

In particular, if w € LP(p) N L™ (w), then uw € Li(p) for all g € [p,7].
Proof. The identity (167) is equivalent to

g0  q(1-0) 1 1

Ty = + :
p r p/(ad) ~ r/(a(1=9))

% and ﬁ are Holder conjugate exponents. Since they are both belong to

1=

that is,
[1, +00], we can apply the Holder inequality:

[t = [ furejul®=07 ap
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qf
(Hélder) v r
S (/|u|9qq—p€ dlu) P (/|u|(1—9)qq(1,g) dﬂ)
0 -0 \9
= (o - Ml -0 )

So, we get (168) by exponentiating by é. O

q(1-6)

Lemma 15.58. Let n > 1 and {pc}teso be a standard family of mollifiers. Let u €
VV]})’C1 (R™) and define ue = u * p.. Then, for every p € [1,n) and q € [1,p"), there exists

C € R such that

6 6 1-6
(169) lue = ullLaeny < C[|VullLagn) - [IVull o an),

where 6 € [0,1] 4s such that % =0+ 1;*9-

Proof. First, we apply the Interpolation inequality for L” norms, Lemma 15.57, to get

1-6

4
e = ull ey < e = ullfsn - fe = ull25¢ g -

Second, we apply the bound (166) from Lemma 15.55 to the first term [|ue —u|| 1 (rn), and
the Gagliardo—Nirenberg—Sobolev Inequality (147) from Theorem 15.22 or Corollary 15.24
to the second term [lue — ul|pp+ gn). We thus get

] —0 0 1-6
llue — uHLl(R") e — u”ip*(Rn) < (€||Vu||L1(Rn)) : (CGNSHVUHLP(JR"))

We have thus obtained (169). O

Remark 15.59. In the inequalities (166) and (169), it might happen that the right-
hand side is +o00. The inequalities are still true, although they don’t provide any extra
information.

Proposition 15.60. Let n > 2, p € [1,n) and q € [1,p"). Suppose that {uk}ren C
WHP(R™) is a sequence such that there is R > 0 with spt(ux) C B(0,R) for all k € N.
Suppose also that there exists M € R such that ||u||w1.p@ny < M for all k € N. Then,
there exists a subsequence {ux; }jen that is converging in L*(R™).

Proof. Let {pc}eso be a standard family of mollifiers. and define uj, = uy * pe.
We claim that there are C' € R and 6 € [0, 1] such that, for every € > 0 and k € N,

(170) lluf — ukl|pa@ny < Ce’.
Indeed, if we apply (169) from Lemma 15.58, we get

€ 169) 0 0 1—-6
luk — urllLa@n) < Caeoye [[VullLi@ny - [Vull e @n)

(Holder) ’ _
< Clon€ | Vulllo@ny - £ (BO, R)”" - | Vull o gy

_ C(lﬁg)ﬁe(wan)g/p . HVU”LP(R")
< C(lgg) (wan)e/p,MEQ.

So, we have proven (170).
Notice that, for every € > 0, k € N, and x € R",

W@l < [ pwlutz =yl

(Holder)
< el o @y lwll e )

llp1llze@n)
= "p Mullzr@n
< ||P1||LP(R">M7

E"/P
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and, similarly,

Vi) < [ )l Vute = p)ldy

(Holder)
[l pell Lr' (R™) ”quLT’(R”)

(174) 1
= — = lellee @ IVullLr@n)
e v
lloa | @n)
= En#HVTLHLP(R")
< lerllzeny o
- E"/P ’

It follows that, for each ¢ € (0,1) fixed, the family {uflren C CS(B(0,R + 1)) is
bounded and equicontinuous. By Ascoli-Arzeld Theorem 15.53, {u}, }ren is pre-compact
in C2(B(0, R+ 1)).

We apply a diagonal argument. First, let {ullc; }en be a subsequence of {uj}ren that
is converging uniformly on B(0, R+ 1) to a function v1 € C2(B(0, R+1)). Next, for every
m € N>o, there is a subsequence {u,lci,nm}jeN of {U;{nﬁil}jeN that is converging uniformly

7 :

_ _ J
on B(0, R+ 1). to some v, € C2(B(0, R+ 1)). Notice that, for every m € Nx,
1/m

pm—1
J

1/m
pm—1
J

lim sup ||u r —o.

s = Um|lLpn) < hm sup ||lu - UmHLOO(B(o,RH))fn(Q)
J—ro0 J—roo

Therefore, {ui{nm}jeN is converging to vy, also in LY(R™).

J
We claim that {ugm }men is a Cauchy sequence in L?(R"). Indeed, let 6 > 0. Then
there is L € N such that

(171) c(1/L)? <.
Next, since {ui/LL}jeN is a Cauchy sequence in L?(R™), then there is N € N such that, for
every naturals (Jz, b> N,

(172) Va,b> N,  |lull” —ulE| pa@ny < 6.

kL kE

We also assume N > L. Since we have taken always subsequences, if m > L then
{k™}asn C {kE}asn. Therefore, (172) implies
(173) Va,b> N, fugt - uigLnqu) <4
It follows that, for every a,b > N,
luxg = uggllzaceny < llung = uiy"llzoe) + llug” = wh llzaem + ™ = upllzon

(170)&(173)
< 2001/L) +6

(171)
< 34

We have proven our claim, that {um }men is a Cauchy sequence in L7(R™). O

Exercise 15.61. Let {pc}c>0 be a standard family of mollifiers on R™. Show that, for
every p € [1,4o0],

1
(174) lloellLrny = —=llo1llLe @n)-
€ P

/Rn pe(y)pdy:An <%)p N

n 1
[Z:y/€> dz = dy/e }:m/ﬂgn/h(z)pdz.

Solution.
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Exercise 15.62. In Proposition 15.60, can we take the subsequence {us, } jen independent
of q?7 %
Exercise 15.63. Proposition 15.60 uses a general fact in metric spaces. Let (X, d) be a
complete metric space and {z}' }ken,menu{sc} C X. Suppose that:

(1) for every k € N, {x}' }men converges to xy°, uniformly in k; explicitly, for every

€ > 0 there exists N € N such that, for every m > N and for every k € N,
d(zi’,zp”) < &

(2) For every m € N (but not for m = c0), the set {z}' }ren is pre-compact in X.
Show that {z}°}ren is pre-compact in X. O
§15.17. Extension domains. An open set 2 C R" is called an extension domain if, for
every p € [1,400], there exists T, : WHP(Q) — WP(R™) such that

(1) Tpula = u, for all u € WHP(Q);

(2) Tp is bounded, that is, there is C} such that || Tpullw1,1@ny < Cpllullwip(qy, for

all u € WHP(Q).

An example of a set that is NOT and extension domain, is the so called slit disk:
Q={(z,y) eR*: 2> + > < 1} \ {(,0) : 2 > 0}.
However, there holds the following result

Theorem 15.64. If Q C R™ is an open set with C* boundary, then it is an extension
domain.

In fact, Theorem 15.64 can be pushed to Lipschitz boundary.

Proposition 15.65. Suppose Q C R” is an extension domain and Q' C R™ is an open
set such that B(Q,7) C Q', for some r > 0. Then, for every p € [1,+oo| there exists a
continuous extension operator Ty, : WP (Q) — Wy P ().

Proof. Let ¢ € C°(€) such that 0 < ¢ < 1 and
Q Cint{¢ =1} Cspt(¢) C Q.

Since B(Q,r) C ', we can take ¢ with || V(|| poe@mn) < 2/7. Let Tp :: WHP(Q) — WHP(R™)
be a bounded extension operator given by €2 being and extension domain.

We claim that T}, : uv — CTpu is the wanted operator. To prove our claim, we need to
show that u — Cu defines a continuous operator WP (R"™) — Wy *(€'). Clearly we have

ICulle oy < [lullze@n).

Moreover,
IV (C) || zrry < 1€Vl o @y + uVE]| e @)
< Fulloeny + 2 ll oo e
< (@ +2/r)lullwregn).-
The claim is proven. O

Proposition 15.66. Let Q C Q' C R™ and p € [1,+00). Define Ty : Wy *(Q) — LP(R™)
as Tyu = lou, i.e., T, extends functions to zero outside 2. Then T, is a continuous
operator WP (Q) — WYP(Q'). In fact,

(175) Vu e WP(Q) Moullwre@y = ullwie @

Proof. If u € C; (), then || Tpullw1.p(ary = |[ullywip(q). Since C; () is dense in Wy P(Q),
then we have (175). O

Remark 15.67. By Propositions 15.65 and 15.66, if 2 is a bounded extension domain,
we can assume that the extension operator takes values in the space of functions with
compact support in some fixed neighborhood of €.

§15.18. Extension of Sobolev inequalities to Extension domains. Many proper-
ties of W'P(R™) extend to extension domains.
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§15.19. Poincaré inequality for W, ().

Theorem 15.68. Let n > 2 and Q C R™ a bounded open set. For every p € [1,+00)
there is C' € R such that,

(176) Vu e Wo(Q),  lullro) < ClIVullr(o)-
Remark 15.69. The inequality in (176) can also be written as

Yu € WyP (), / |ul? dz < cp/ |Vul? da.

Lemma 15.70. Let 1 <a<b<oo. If Q CR" is a measurable set, then
b—a

(177) Vu € Lioe(Q),  |lullpe) <1915 [lullLoqy,

where |Q] = Z™(Q) is the volume of Q.

Proof. Since b/a > 1, we can apply the Holder inequality:

771

b
_a

(Hélder) b % 5 b b—a
/ lu|*dz < </ |u|%a dx) . / ! (/ |u|® d:r) Qe
Q Q Q

Proof of Theorem 15.68. We shall prove (176) assuming u € C2(£2), to obtain the general
statement by approximation in W, ?(Q).

Fix p € [1,400). Recall that, if ¢ € [1,n), then ¢* = . Since lim,_,,,— ¢" = 400,
there is some ¢ € [1,7n) such that ¢* > p. Let u € C(Q ) Therefore using Theorem 15.22,

O

" —p
lullLr) <1977 [Jull Lo (q)

(147) a* —p
< Qe [ VullLage).-

If p < n, then we can take ¢ = p already (because p* > p), and (176) is proven with
= |Q\pp*_ﬂp = \Q|% If p > n, then, for each appropriate ¢ € (1,n) we have ¢ < p and
thus
(77)  peg
[Vullza@)y < 1977 [[VullLaq)-

q

c e . a’—p p-g
This implies (176) with C' = |Q| @ © »a . O

§15.20. Extra that might be added in the future.

e Poincaré inequality for extension domains
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Part 4. Application of Sobolev spaces theory to PDE
16. EvLuipTic PDEs

§16.1. Setting. Let n > 2 and Q C R™ open. We are interested in functions u :  — C
such that

(178) Lu(z) = div(A(z)Vu(x)) + b(z) - Vu(z) + c(z)u(x) = f(x),

where A(z) € C"*™ is a n X n-complex matrix, b(z) € C" and c¢(z), f(z) € C, for each
x €.

How do we interpret the formula (178)? We may use distributional calculus: in such a
case, we need to make sense of the products AVu =3}, A;x0ju, b-Vu =3, b;0;u, and
cu. If the coefficients A, b and ¢ are smooth, then we can consider Lu = f for u, f € 2'(Q);
see §13.15. Another possibility is that we consider u € Wlicl (©): in such a case, all

derivatives of u are L. functions and thus, if the coefficients A, b and ¢ are bounded in
L, then the products are still of class Li,. and thus div(AVu) = >k 0i(AjrOku) € 7',

Definition 16.1. The standard conditions on L are:

(1) A € L*=(Q;C™™™), such that A(x) is symmetric for every z € Q and there are
0< A<A < oo with

(179) VeeQ, VEER" AP < (6 A@)E) = D Ay(n)&g < AJE.

i,5=1
(2) be L¥(Q;C"), c € L=(9;C).

Condition (179) is called ellipticity. So, L as in (178) is elliptic if A satisfy (179).

Notice that, under these conditions, the formula for Lu(x) written in (178) is not well
founded. Indeed, even taking distributional derivatives, if A is only in L°°, then the
product A(z) - Vu(z) is not a well defined distribution. However, we have written L in
divergence form so that we can say the following: If u € W' (Q), then we define

loc

Lu = fin Q,
=
Vo € C2(Q A b- dz = d
o) secz@ [ (1avavo)+0-Vus+eus)ao = [ foa,
=
Vo € C°(Q) /(ZA]-kajuak¢+(ijajqucu)gb)dx:/f(;de.
Q \ g J Q

Exercise 16.2. Let p € [1,00) and set p’ = p%l the Hoélder conjugate of p. Show that, if
u € WHP(Q) satisfies Lu = f as in (180) with f € LP(Q), then

Vo € Wli‘f/(Q) /Q ((AVu, Vo) +b- Vup + cu¢) dx = /Q fodx.

¢

Exercise 16.3 (??). If u € W, (Q) and A,b, ¢ are bounded and A elliptic, and Lu =
f e LL_(Q), then div(AVu) € L, (). Show that u € W21 (). O

loc

§16.2. The Sobolev space H™. Let n € N and 2 C R" open. If m € N, the Sobolev

space H™(Q) is nothing else than the Sobolev space with integral exponent 2, that is,
H™(Q)=W™*(Q), HZ(Q) =W2(Q), HJ(Q) =Wi"?Q).

loc

These spaces are in fact Hilbert spaces, when endowed with a correct norm. We will focus
onm =1 (and m = 0, which is L?).
For u,v € H' (), we define

(u,v) () = (u, v))
(181) = /{; ((Vu, Vo) +u-v) de

= (Vu, Vo) 12(q) + (4, ) L2(0)-
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Proposition 16.4. Let n > 1 and Q C R™ open. Then the bilinear map (-,-)) defined
in (181) makes H' () into a Hilbert space, with norm

HUHH1<Q) =1/ <’LI/7’U/>}II(Q)7 Yu S HI(Q),

which is biLipschitz equivalent to the Sobolev norm || - |ly1.2(0)-

Proof. For every x € Q, and every u,v € H*(Q), we have |(Vu(z), Vi(z))| < |Vu(x)] -
|V@(x)|. Notice that, if u € H*(Q), then

||UH§11(Q) = (u, u>H1(Q)
= (Vu, Vu) 20y + (v, u) 2
= HVUHi?(Q) + [Jul|2(2)%,
that is,

lullars oy = /I1Vul122 0 + lull? ()2
Since there are constants ¢, C € (0,400) such that, for every a,b € R? cva2 + b2 <
la] + [b] < CVa? + b2, then
cllullmr o) < llullwiz@) = [Vullzz) + llullz2@) < Cllullmr@)-

See also Exercise 15.1. O
Remark 16.5. Proposition 16.4 has already a quite interesting consequence for PDE.
Let f € L*(2) and define Ty : H'(Q) — C, Tyu = (f,u)2(q). The operator T} is in fact a
bounded operator L?(2) — C, therefore it is bounded also on H'(Q); Explicitly, we have
ITrul < [|fllz2@lullz) < 1z llullm ). Since H () is a Hilbert space, the Riesz

Representation Theorem implies that there exists a unique v € H'(2) such that, for all
¢ € HY(Q), Tro = (u, ®) 1 (- In particular,

(182) Vo € C (), / fédx = / ((Vu - Vo) + up) dz.
Q Q
The property (182) has a distributional interpretation: since [,(Vu-V¢)dz = > =1 0jul0; P =
—Au[g], then (182) is equivalent in 2'(Q) to
(183) —Au+u=f

We have thus proven that, for every f € L*(Q), there exists a unique u € H'(Q) that is
a distributional solution to (183).

Exercise 16.6. Show that, if @ C R™ is an open and bounded set (or with finite volume),
then, for every A € (—o0, 0], there exists a unique solution to

—Au = Au,

u € Hp(Q).
Since such solution must be u = 0, you have shown that the half-line (—oo, 0] is not in the
spectrum of —A. %

§16.3. An alternative scalar product on Hj(Q). If Q is a bounded open subset of
R™,® the Poincaré inequality from Theorem 15.68, implies that
(184) <<u7 U>> = <V’U,, V’U>L2(Q)7 Vuv v E H&(Q)v

is a Hilbert scalar product on H}(Q). Indeed,
1 1 (176)
%”UHH(Q) + §HVU||L2(Q) < IVullLze) = v {u, w) < lullgrays
which shows that the quasi-norm u — ||[Vul|12(q) is a norm bi-Lipschitz equivalent to
u = full g a)-
As we did in Remark 16.5, we can deduce an existence and uniqueness result for a
PDE. Indeed, if f € L*(Q), then the operator Ts¢ := (f, ®) 12(q) is bounded on HY(Q).

8Connected? only finite measure? TODO
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Therefore, by the Riesz Representation Theorem, there exists a unique u € Hg(Q) such
that

Vo e CZ(Q),  (u,¢) =Tro.
Distributionally, this reads as
Au = fin Q.
We have proven the following theorem:

Theorem 16.7. Let Q C R™ be a bounded open set. For every f € L*(Q), the boundary
problem

Au = f in Q,
uw=0 on 99, i.e., u € H}(Q),

has a unique solution u € H ().
§16.4. The dual of H'. The dual space of H™ is, by definition, the space
H™Q) = (H™(Q),  and  Hy™(Q) = (Hy'(Q))

Let us focus on m = 1. Being a Hilbert space, the dual of H™ is canonically isomorphic
to H™ itself. However, it is useful to keep the two spaces distinct. The main reason, in
my view, is that we want to see L?(Q) as a subspace of the dual of H'(Q). Indeed, if
f € L*(Q), then, as we have seen above, u — [, ufdz is an element of H™ ()" (or
HJ'(Q)"). However, it is clear that L?(Q) ¢ H'(Q): in fact, H'(Q) < L*(Q).

For more discussions, see
https://math.stackexchange.com/questions/314113/dual-space-of-hl.

§16.5. Functional Analysis: Lax—Milgram Theorem. See also [15, Aufgabe V.6.18].

If X is a Banach space, we denote by X' its topological dual Banach space, and, for
¢ € X' and x € X, we write the pairing £[z] as x/ (¢|z) x.

The following theorem will replace the role of Riesz Theorem in the previous discus-
sion. It is here written for Banach spaces: notice that there are Banach spaces that are
isomorphic to their duals without being “hilbertable”; see https://math.stackexchange.
com/questions/65609/isometric-to-dual-implies-hilbertable.

Theorem 16.8 (Lax—Milgram Theorem). Let (X, || - ||x) be a Banach space and B :
X x X — C a bilinear map.
(1) If B is bounded (i.e., continuous), that is, there is 8 € R such that,

(185) VuweX,  |Bluoll < Bllullx - Jollx,
then there is a bounded linear operator T : X — X' with | T|| < 8 and such that
(186) Yu,v € X, Blu,v] = x/(Tu|t)x.
(2) If B is bounded and coercive, that is, there exists 6 > 0
(187) Vu € H, Re(Blu,u]) > 8|lull?,

then the linear operator T : X — X' is invertible and [|[T~"|| < +.

Proof. Suppose B is bounded. If u € X, then v — B[u,v] is a continuous (thanks
to (185)) linear functional X — C and thus there exists a unique Tu := w € X’ such
that Blu,v] = x/(Tu|t)x for all v € X. It is easy to see that the so defined function
T : X — X’ is linear. We will next prove several properties of this operator T'.

We claim that T is bounded, and

HT||Xﬁ>X’ < B
Indeed, if u € X, then
[Tullxr = sup{|x/(Tulv)x| : v € X, [jv]lx <1}
= sup{|Bu,v]| : v € X, |jv]|x <1}

(185)
< sup{Bflullx - [[vllx :v e X, fvllx <1}


https://math.stackexchange.com/questions/314113/dual-space-of-h1
https://math.stackexchange.com/questions/65609/isometric-to-dual-implies-hilbertable
https://math.stackexchange.com/questions/65609/isometric-to-dual-implies-hilbertable
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= Bllullx-

Therefore, we have proven the claim.
We claim that T is coercive, i.e.,

(188) Vu € X, 1Tul|x > o||lx||x-
Indeed, if u € X, then

(187)
Slle|* <" Re(Blz, ) < |Blz,7]| = |x/(Tulv)x| < ||Tz|x||z]|x.

Hence, (188) follows.
We claim that im(T) = T[X], the image of T, is closed in X'. Indeed, if o € X’ and if
{uk}keN C X is a sequence such that limy_, .o Tur = o € X', then, using coercivity of T,

88
we have ||u; — uk| x S) $|T[u; — uk]l|x/, and thus {ux}ren is a Cauchy sequence in X
If limg— 00 ur, = u, then, by the boundedness of T', we have o = Tu € im(T).

We claim that im(T) = X’. Since im(T) is closed, we only need to show that, if
v € X annihilates to im(T"), then v = 0 (thanks to Hahn-Banach Theorem). If v € H

annihilates to im(7"), then 0 = x/(T'u|v)x for every u € X. In particular, combining this

(188)
with coercivity, we obtain 0 = x/(Twv)x > 6||v||%. Therefore, v = 0.
Finally, since T' is a continuous, injective and surjective linear operator, its inverse is
also continuous. O

§16.6. First Existence and Uniqueness result. We denote by R™*" the space of all
n X n matrices. As such, if A € R"*", then |A|o := sup{|Az|: x € R", |z| < 1}. So, if
A€ L™®(Q;R™™™), then

[AllLoe ) = sup{|A(2)|oo : @ € Q}.

The scalar product (-,-) is in fact sequilinear and defined as
V:mye(C", (;my):a:y:Zx]gj]
j=1

Theorem 16.9. Let n > 2 and Q2 C R™ open and bounded. Let L be a second order linear
differential operator in divergence form, that is,

(189) Lu = —div(AVu) + b - Vu + cu,
where
(190) A e L= (R™™), be L(;C), and c € L=(Q;C).

Then L is a bounded linear operator L : H} () — Hy ' (Q).
Suppose that there are 0 < 0 < © < 0o such that

(191) VeeQ, VEeC",  0lE* < (A(2)¢,€) < O

Then there is v > 0 (in fact, the one for which holds (196)) such that for all X\ € C with
Re(\) > v, the operator L+ X : Hy(Q) — H ' (Q) is bounded and invertible. In particular,
for every f € Ho_l(ﬂ) there exists a unique weak solution to the boundary problem

(192) Lu+ );u =f inQQ,

Moreover, denoting by ¢ : Hy(Q) — L*(Q) the standard embedding, the operator Ky =
vo (L =X 2y : L*(Q) — L*(Q) is bounded, linear, and compact.

For proving Theorem 16.9, we will study the bilinear form &7, : H3 (Q) x H}(Q) — C,
(193) Erlu,v] = / ((AVu, Vo) + (Vu - b+ cu)v) dz.
Q

This bilinear form &7, is called the Dirichlet form of L.
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Lemma 16.10 (Energy Estimates 1). Let n > 2 and Q C R" open. Let L be a second
order linear differential operator in divergence form as in (189). Assume that L has
bounded coefficients, that is, (190). Define & : H} () x H} () — C as in (193).

Then, there is a > 0 such that, for all u,v € H} (),

(194) Vu,v € Hy (42), 6L [u, v]| < allull g @) llvll a1 @)

In particular, the linear operator L : H} (Q) = 2’ is a continuous linear operator L :
H(Q) — Hy'(Q) with

(195) Yu,v € Hy(Q), ELfu,v] = -1y (Lult) gy o) -
Proof.

|&L[u, v]| < / [(AVu, Vv) + (Vu, b)o + cut| dz
Q

< / |AVu|[Vo| + bl Vulo] + |eus]| da
Q

<Al zoo @) IVull L2y [ VOl 20y + 16l Lo () I VUl 20y [Vl L2(0)
+llellnee @) llull 2@y llvll L2 @)
< ([Allzes @) + 10l oo (02 + llel oo @) 1wl g1y 1ol g1 oy

So, we have (194) with a = (|| Al|zee ) + ||bllzo @) + llc|lLoo())-

By the Lax-Milgram Theorem 16.8, there is a continuous linear operator T : Hg(Q) —
Hy'(Q) that satisfies the role of L in (195). We claim that T' = L. Indeed, if ¢ € 2(9),
then, for every u € Hj(Q) we have

Lu[d] = o) {Lulp) 29
= (—div(AVu) + b - Vu + cu)[¢)

= —Zaj(AVu)j[qﬂ +/ b-Vug + cupdx
i=1 @

= (AVu);[0;¢] +/ b Vueg + cupdzr
J=1 Q

n

= /Q(Z(AVu)j[@jqb] +b-Vud + cug) dz

j=1

= / ((AVu) - Vo +b- Vug + cud) dz

Q

= (AVu, V@L?(Q) +{(b- Vu + cu), @)Lz(n)

= 61lu, 9]

= ui)y (T, 9) g1 (a)-
Since 2(Q) is dense in Hg(Q2), we obtain that Lu = Tu not just on 2(Q), but also on
HY(Q). O

Lemma 16.11 (Energy Estimates 2). Let n > 2 and Q@ C R™ open. Let L be a second
order linear differential operator in divergence form as in (189). Assume that L has
bounded coefficients, that is, (190), and that L is elliptic, that is, (191). Define &L :
H(Q) x H5(Q) — C as in (193).

Then, there are 8 > 0 and v > 0 such that, for all u,v € H} (),

(196) BIVullzz 0y < Re(Snlu, ul) +llullz2(g)-

Proof. We have

, . (9
0/ [Vul|"dz < /(AVu, Vu)dz
Q Q
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érlu, u) —/Q((Vu,b}ﬂ—kc|u|2) dz

< (62w, ul| + 1Bl 2o o) [Vl 2oy lull 2 @) + llel oo @ lullZ2 o)

(197) ||VUH%,2(Q) 1 ”u”%ﬁ(ﬂ) 2
< &[MUHHbIme)(E e V@ ) el

0

[with € = ———
6]l oo ()

0 ||b||2Loc(Q)
= |&Llu, ul| + §||VUH2L2(Q) + THUH%Q(Q) + ||CHL°°(SZ)||UH2L2(Q)

0 ||b||2L°<>(Q
= |&Llu, ul| + §||VU‘|i2(Q) + <29) + [lellzoe @) HUHQLZ(Q)-

1113 00 (62

So, we have (196) with 8 = £ and v = —%“ + ||c|| oo () - O

Remark 16.12. Notice that, if ¢ is real-valued and ¢ > ¢o for some ¢y € R, then one can
bl|3 oo .
take v = H”LQ% + co in (196).
Lemma 16.13 (Cauchy inequality with €). For every a,b € R, and for every e > 0,
2 2
1b

Jr

a
< e— .
(197) ab< e+ -

Proof.
1 \2
=ea® + 1b2 — 2ab.
€

O
Proof of Theorem 16.9. The conditions (190) on the coefficients of L easily imply that L is
a continuous linear operator H3 () — 2'(Q). Define & : H}(Q) x Hg (Q) — C as in (193).
By Lemma 16.10, using again (190), the bilinear map &7, is bounded. By Theorem 16.8,

there is a continuous operator T : Hg(Q) — Hy () such that (186) holds. However, see
that (186) is equivalent to say that T = L. Indeed, if u € H3(Q) and ¢ € 2(Q) C H}(Q),

Lu[(;S] = gL[Ua ¢] = Hy (@) <Tu|¢>Hé(Q)7

hence Lu = Twu as elements of 2'(Q). Therefore, L is a bounded linear operator L :
HA () — Hy (%),

Next, we also assume the ellipticity condition (191). Let «, 8 and v as in Lemmata 16.10
and 16.11, and let A € C with

(198) Re(A) > .
Define By : H}(Q) x H3 () — C by
Yu,v € Hy(Q), Bilu,v] = Epfu, v] + Mu,v) 12(q)-
On H}(R), we consider the Hilbert scalar product ((-,-)) defined in (184), with norm
I lag ) = VG o)

From Lemmata 16.10 and 16.11, we obtain that B, is a bounded and coercive bilinear
map. Indeed, on the one hand, for every u,v € Hg (),

(194)
[Balu, o]l < allullay o)l @) < aCllullpy @) llvllag @),
where C' is a constant of equivalence between the two norms on H{(f2). On the other
hand, for every u € Hg (),
Re(Balu, ul) = Re(r[u, ul) + Re(N)l|ull 720

(196)
> 5||VUH2L2(Q) + (Re(A) — ’Y)||u||i2(m
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(198) )
> BlIVullzz) = Bllulluy @)

We apply Lax—Milgram Theorem 16.8: there exists a continuous, invertible linear operator
Ty : H3(Q) — H;'(Q) such that

Vu,v € Hy(Q) Bi[u,v] = HO—I(Q><T)\U/|'U>H6(Q)A

We claim that Ty = T+\. Here we mean that Thu = Tu+Me(u), where ¢ : H}(Q) — L*(Q)
is the standard embedding. Indeed, for all u,v € Hj(Q),

H51(9)<Tu + >‘u|U>Hé(Q) = HO*1<Q)<TU|'U>H$(Q) + )‘Hgl(g)@(u)‘wHé(Q)
= &L[u, v] + Mu, v) p2(0) = Balu,v]
- H51(0)<TAU|U>H3(Q).
It follows that, for every f € H, ' (), the preimage u = T '[f] is the unique solution
to (192).
Finally, the operator K is the composition of a continuous linear operator (T — /\)71

with a continuous linear compact operator ¢ : Hg(Q) — L*(Q2). The compactness of ¢
comes from Rellich-Kondrachov Theorem ?77. 0

§16.7. If you want kaos. Here I write something that may confuse the reader quite a
lot. Read it at your own risk.

The pairing (u,v) 120y = [, udz is continuous on H'(2), but it is NOT the Hilbert
scalar product of H'. For instance, the closure of H'()) with respect to the norm
I llz2@) = /(W v)r2q), is L*(Q2). Continuity means that, if f € L*(Q2), then u
(u, f)12() is an element of the dual of H}(Q).

Riesz Theorem implies that there is some vy € H' () such that

def
Vu € H'(Q), (u, fYr2) = (Vu, Vog) 2y + (U, v5) L2() = (U, V7)) 1)
We have seen that, if © is bounded, then (u, U>H€)(Q) = [o(Vu, Vv) dz is a Hilbert scalar
product on Hg (). Again, Riesz Theorem implies that there exists w; € Hj(Q) such that
!

def
Yu € H&(Q)7 (u, fr2) = (Vu, Vwy) 2(q) = (u,wf)Hé(Q).

§16.8. Functional Analysis: Fredholm Alternative Theorem. Recall that, if X
and Y are Banach spaces (e.g., Hilbert spaces), a linear operator K : X — Y is compact
operator if K maps bounded sets to compact sets.
See also https://terrytao.wordpress.com/2011/04/10/a-proof-of-the-fredholm-alternative/

Theorem 16.14 (Fredholm Alternative). Let H be a Hilbert space with scalar product
(-,-) and norm || - || = /{(-,-). Let K : H — H be a compact linear operator. For every
AeC,

(1) ker(K — \) is finite dimensional;

(2) im(K — A) is closed;

(3) im(K — \) = ker(K* — X\)*; )

(4) dim(ker(K — X)) = dim(ker(K™ — X));

(5) ker(K — X\) = {0} if and only if im(K — \) = H.
§16.9. Second Existence and Uniqueness result.

Theorem 16.15. Let n > 2 and 2 C R"™ open and bounded. Let L be an operator as in
Theorem 16.9 and define B : Hy () x Hy(Q) — C as in (2?). Define N, M C Hy(Q) as

N ={uc HyQ): &lu,v] =0 Yo € Hy(Q)},
M={veH)Q): Elu,v] =0 Yu € Hy(Q)}.
Then:
(1) Both N' and M have finite dimension and dim(N') = dim(M).


https://terrytao.wordpress.com/2011/04/10/a-proof-of-the-fredholm-alternative/
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(2) N is the linear space of solutions to

(199) Lu =9,
(3) for every f € L*(), the boundary value PDE
Lu =
(200) v {

has a solution if and only if
<f7v>L2(Q) =0 Yv € M.

(4) The affine space of solutions to (200), if not empty, has the same dimension of
N. In fact, given a solution ui to (200), then ui + N is the space of solutions
to (200).

Proof. Let v as in Theorem 16.9, i.e., as in Lemma 16.11. Define K =T, ' = (L +7) ",
which is a compact bounded linear operator L*(Q2) — L*(Q), as shown in Theorem 16.9.
Notice that, for every v € H5(Q) and f € L*(Q)

u solves (200) & EL[u,v] = (f,v) 120 Yo € Hy(Q)

& Byfu,v] = (f +yu,v)120) Vv € Hy(Q)
(201) s Tu=f+yu

<:>u:T{1(f+’yu) =Kf+~vKu

sSu—vKu=Kf.
So, considering the case f = 0, we obtain that u solves (199), if and only if u € ker(Id—vK),
that is,

N = ker(Id — vK).
Since vK is a compact operator L?(2) — L?(Q), the Fredholm Alternative Theorem 16.14
implies that A = ker(Id — vK) is finite dimensional.
Moreover, for each f € L*(Q),
(200) has a solution ) Kf e€im(ld —vyK)

A K f 1 ker(Id — yK*)

Y f 1 ker(1d — v K*),

where the equivalence (x) is justified as follows: if v € ker(Id —vK™), i.e., YK *v = v, then
YK fov)r20) = Y, K™v)12(0) = (f,v)L2(q)s SO, () holds, even when v = 0.
We claim that

(202) M = ker(Id — vK*).
Notice that, similarly to what we have done in (201),
vEMe ELfu,v] =0 Yue Hy(Q)
def _ _
& By[u,v] = Blu,v] +v(u, 0) p2(q) = (u,79) L2 Yu € Hy ()

< Ho—l(g)<T’vu‘@>H%(Q) = <“7'7@>L2(Q) Vu € Hé (2)
(203) & e (lTy Dzt = W02 Vue Hy(Q)
ST =90

S o—y(T)) 'o=0
Sv—y(T])tv=0

Here we have used the notation (-) " to denote the dual map: if T : X — Y is an operator
between Banach spaces, then " : Y’ — X' is the dual map defined by

(204) y{¢,Ta)y = x(T ¢la)x, VzeX, (eY



114 NICOLUSSI GOLO

To complete the proof of our claim (202), we need to show that
(205) vw € L*(Q), (T]) 1w = K*w.
First, notice that (7)) ™' = (I; '), by an easy argument using directly (204):

Vee X, VEe X, (f) = (€T ' Te) = (070 ) elr) = TT(T YT =ldy.

So, (205) reduces to showing K Tw = K*w for all w € L?(€2). More precisely, if K = 7t
Hy ' (Q) — H$(Q) (which is the operator from which K descends), then K ' : Hy *(Q) —
Hj () and

(206) Va,b € Hy '(), HL(Q) <Ka‘b>H51(Q) = H51(9)<G|KTb>Hg(Q>
If a,b € L*(Q) C Hy ' (), then (206) says
(a, K™b) 12(0) = (Ka,b) 20
= (f(a, b)r2()

., Ka(x)b(z) dz

= H%(Q)<Ra|B>HO_1(Q)
o
:H51(9)<G|K b>Hé(Q)

= / a(z)K "b(z) dz
Q
= (a, RTB)Lz(Q).
We can now complete the sequence of equivalences (203) with
veEM (g)va(TJ)—lq’;:O
S v—yK'v=0.

We have thus proven our claim (202).
With Theorem 16.14 and claim (202), we have proven all the statements of Theo-
rem 16.15. (]

Exercise 16.16. If u € .4 means Lu = 0, what does v € .# mean? %

§16.10. Regularity. We assume that L has bounded coefficients, i.e., (191), and that L
is elliptic, i.e., (190).

Lemma 16.17 (Caccioppoli Inequality®). Let n > 2 and Q C R™ open. Then there exists
C € R such that the following holds.
Ifu € HY(Q) is such that Lu = f in Q for some f € L*(Q), i.c.,

Vv € Hy(Q), & (u,v) = (u, f)r2(0).
then
(207) IVullZ2) < Clllullzz ) + IF1Iz20)-
Proof. Let Q' € Q and ¢ € C*(€;0,1]) be such that
Q' Cint{¢ =1} C spt(¢) € Q.

9||VUH%2(Q/) = G(Vu, V'LL>L2(Q/)

(190)
S <AV’LL, Vu)LQ(Q/)

< (AVu, V(Cu)) L2(a)
< &1, Cu) — (b~ Vu + cu, CU>L2(Q)
=(f—b-Vu—cu,(u)p2q)

9https ://en.wikipedia.org/wiki/Renato_Caccioppoli


https://en.wikipedia.org/wiki/Renato_Caccioppoli
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(Holder)
< (Ifllzzee) + 1bllse @) VUl Lz ) + llellzee @) lull L2 @) ICull 2 (o)
(197) ||f||2L2(Q) ||CU||2L2(Q)
< +
- 2 2
bl oo (@) . 12
20 ICullz2(o)

+llellzoe @) llull L2 oy ISull L2 (o)

0
+ §||VUH2L2(Q) +

IF1Z2@) | (1, bl 0
byo<¢<i< =+ (5 + ey chmm) lullZ2(0) + 511 Vullzz)-
Therefore
2 I1/11320
(208) 2| Vullizgan — [IVulf2) < 55 4 (1+ bl ) + 20]ell (o)) lull 220y

Since the right-hand side of estimate (208) does not depend on €', if we take the supremum
over all Q' € Q, we obtain

2 ||f||i2 Q
IVullizi0) < 55 4 (14 [bllze @) + 26llell (@) lul72()-

We have thus obtained (207). O

Lemma 16.18. Let n > 2 and Q C R™ open. Suppose that v € H*(Q) is such that
Lu = f for some f € L*(Q), where L has b= 0 and ¢ = 0. Bquivalently, v € H'(Q) and
f € L*(Q) are such that

(209) Yo e Hy(Q),  (AVy, Vo) 209y = (f,0) 1200,

where A € L (Q; C™*™) satisfies the ellipticity condition (190).
For every Q" € Q there exist constants C and e depending on Q", || A|| L ), [|DA Lo (0),
and 0, such that, for every h with 0 < |h| < €, and for every j € {1,...,n},

(210) 1AFVullZ2 @y < CllullZa () + IVullZa ) + 11122 ()-
Proof. Fix j € {1,...,n} and h #0. Let Q' € Q' € Q and ¢ € C*°(Q;[0,1]) be such that
Q" Ccint{¢ =1} Cspt(¢) € Q' €.
Then there exists € > 0 such that, for every h with 0 < |h| < €,
vi=—ATM(C AN € H(Q).

With the aim of applying (209) with this test function, we make the following estimates.
We see that

(AVu, Vo) 12(q) = (AVu, V(=AT"((PAfu))) 2 (0

(154)

(A?(AVu), V(C2A?u)>L2(Q)
2 (AP A)Vu 4+ AP APTu, ABu2CVC + CV(AM)) 120
=P+ R,
where AM (z) = A(x + he;) and
= (A(h)A?Vu,CQV(A?u»Lz(Q)
= (AN AU, CAI V) 20

(190)
> 0lICATVul L2(q)
> 9”A?VUHL2(Q”)§
Fy = (A} A)Vu, A?U2CVC>L2(Q)
+((ATA)Vu, PV (AJu) 12y
+ (AP ALV u, Alu2¢VE) 120
< 2/ A7 Al pos (o) Vel 20 1A ull 22 () [ VE e ey
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+ HA;‘LA”L‘X’(Q’)||VUHL2(Q/)HCA;LVUHH(Q/)

+ 2||A]| oo (@) ICAT V|| L2 oy | AT | L2 (0 V] Lo (27
< 2| DA| oo o) [ VullZ2 () IVE | 2o o)

+ HDAHL‘”(Q)||VUHL2(Q)”CA?VUHLQ(Q)

h

+ 2||A||L°°(Q)||CA.7 Vu||L2(Q)||VUHL2(Q)||V<HL°°(Q)

(197) ,
< 2|IDA|poe (o) [IVC] oo () VUl 20y

||A||%oo(n) + ||DA||2L«>°<Q>
0

+4V¢ [T (0 IVullZ2 0
0
+ §||CA?VU||22(Q)'

Since

o7 [ullizqy  Ifll72
(AVu, Vo) 120y = (U, [ 2 < ullez@ll fllzze) < 5 @ 4 5 @,

we obtain

HU||2L2(Q) I ||f||2L2(Q)
2 2
+ 2|DA]| oo ) I VE | oo () | Vuul| T2 )
HAHQLOO(Q) + HDA||2L<>O(Q)
0

We conclude that there is a constant C' € R depending on ||Al|Lee(q), ||[DAlLe (),
IV¢]| oo () and @ such that

HCA;LVUWL%Q) < C(H“Hi?(n) + ||Vu||2L2(Q) + ||f||2L2(Q))-
Since ¢ = 1 on Q" then we get (210). O

0
§HCA?VU||2L2(Q) <

+ 4| V|| (0 HVU”?:?(Q)-

Theorem 16.19 (Regularity of solutions to Elliptic PDE). Let n > 2 and @ C R™ open.
Let L be a differential operator as in (191), with bounded coefficients (190), and satis-
fying the ellipticity condition (189). Moreover, we assume that

HDA”LOC(Q) < 00,

that is, that A is Lipschitz.
Then, for every Q' € Q there exists a constant C such that

(211) Vu € HI(Q)> ||D2UHL2(Q/) < C(HUHL2(Q) + ||LUHL2(Q))~
In particular, if w € H'(Q) is such that Lu € L*(Q), then u € HZ ().

Proof. Let Q' € Q and u € H'(Q) with f = Lu € L*(Q) (if || Lul|2(q) = oo, then (214)
is trivial. Define M as the differential operator

vwe H'(Q), Mw=—div(AVw) = Lw — (b- Vw + cw).
Notice that, if w € H*(Q), then b- Vw 4+ cw € L*(Q). So,
Mu=f:=f—(b-Vu+cu) € L*(Q).
Notice that
(212) Hf”LQ(Q) < blloe @I Vull 2oy + llellzee @ llull 2 (0)-
Applying first Lemma 16.18, we obtain a constant C' (independent of u) such that
liriljélp 187 Vull 2@y < Cllull 2@y + IVl 2@y + 1 fll2@)

The estimate (212) and the Caccioppoli Inequality of Lemma 16.17, then implies that
there exists a constant C' (independent of u) such that

hf}lblsgp ATVl 2@y < Cllull 2y + 1fllL2))-
>
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By Theorem 15.47 (using also the quantitative version given by Proposition 15.43), we
obtain (214). O

Exercise 16.20. Re-write Theorem 16.19, together with Lemmata 16.17 and 16.18, and
their proofs, for L = A on R". O

Corollary 16.21 (Regularity of solutions to Elliptic PDE). Letn > 2 and Q C R™ open.

Let L be a differential operator as in (191), with bounded coefficients (190), and sat-
isfying the ellipticity condition (189). Moreover, we assume that, for some m € N, we
have

(213) A e Wmthe(Q, cm ), be W™™>(Q;C"), ce W™™(Q;C).
Then, for every ' € Q) there exists a constant C such that
(214) vue H'(Q),  |lullgmizory < Clllullp2() + 1Ll mme))-

In particular, if w € H'(Q) 4s such that Lu € H™(S), then u € H ().

loc

Proof. We prove the statement by induction over m. Let ¢ € N. If ¢/ = 0, then we just
apply Theorem 16.19. Suppose £ > 0 and suppose that the statement above holds for
m < £: we will prove it for m = £. Under the hypothesis above on L, we have that for
every ' € 2 there exists a constant C such that

(215) Yu € H'(Q), Null et oy < CllullLz) + 1Lull ge-1(q))-
For each j € {1,...,n}, we have
Loju = —div(AVOoju) + b- VIu + coju
(216) = 9;(—div(AVu) + b - Vu + cu) — (— div(9;AVu) + 9;b - Vu + d;cu)
= 8]Lu — Lju.
Straightforward estimates give, for every m € N for which (213) holds, we have C;, < co
such that
(217)
ILjullam() < || div(9;AVu)|[gm @) + 1056 - Vullama) + [10cullam «)
< Z [ID*(div(9; AVu)) | r2(q) + D*05b - Vul|r2(q) + [D*djcullr2(q)
la]<m
< Crn(|Allwmt2.00 () + [1bllwmt1,00 () + lellwmtt.00 @)Ul gm+2 )

(213)
< CmHu||Hm+2(Q)-

So

llull gresz oy < llullp2@) + Z 1052l gre+1
j=1

(215) n
< ullzz) + C Y (105ull 20y + 1L05ull re-1 )

j=1

(216) n
< HUHL2(Q) + CZ(H@'“”L?(Q) + |‘ajLu|‘H’5*1(Q/) + |‘LJ'UHHZ*1(SZ’))

j=1

(217)
< O (Jlull gy + 1 Lull geay + llull e q))

(215)
< C" ([ILull ey + lull 2oy + 1 Lull ge-1(oy)

< C" (1Lull grecay + lullL2q)) -
We eventually have (214) for m = 2. O
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17. EXERCISES
§17.1. Eigenvalues of laplacian on interval. We want to study, for A € C and ¢ > 0,

{—Au—!—)\u—() in (0,4),
u(0) = u(¢) = 0.

In other words,

(218) {u” =u in (0,¢),

u e H'((0,0)).
Lemma 17.1. Let u be a solution to (218). Then u € C*((0,4)).
Proof. This is an application of Corollary 16.21. O

Be aware that the regularity stated in Lemma 17.1 is in the open interval (0,¢) and
not on the whole [0, £]. We will procede as follows:

(1) the assumption v € H((0,£)) alone gives us that u is continuous on [0, /] and
that u(0) = u(¢); see the following two Lemmata 17.3 and 17.4.

(2) Then, we will extend u to R in such a way that the extension & = E(u) is a
bounded function on R that solves A% = A& on R; see Lemma 17.5 and Corol-
lary 17.6.

(3) We will find all solutions of Av = \v for v € .#/(R) using the Fourier transform;
see Proposition 17.7.

(4) Among the solutions v on R, we look for those v that are extensions of functions
in H}((0,£)); see Proposition 17.9. In this way, we will find all solutions to (218).

Exercise 17.2. Try to guess solutions to (218). Try also to show they are the only one.
O

§17.1.1. Fundamental properties of u.
Lemma 17.3. If u € W"'((0,£)), then, up to changing u on a set of measure zero,
u € C([0,4]) and
veelo,  u@) =u)+ [ w)dy
0

Proof. Define v : (0,£) — C by

We claim that
(219) v =
If p € C°((0,)), then

/ () (a) da = / Z / / W ()¢ (@) dy de

-/ v [ ws@ara+ [ / / " ()6 () derdy
L

_ / o (5)b(y) dy

0

¥4
- / () (4) dy.

This shows (219).

Therefore, (u — v)’ = 0 and thus, by the Constancy Theorem 13.62, there exists ¢ € C
such that, for almost every = € (0,£), u(z) = ¢+ v(x). We conclude that, up to changing
u on a set of measure zero,

T

u(z) = u(€/2) +/ o' (y) dy.

0/2
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By the continuity of the integral, not only w is continuous, but also lim,—,o u(z) exists and
it is equal to u(¢/2) — 0@/2 u'(y) dy, and similarly for lim,_,¢ u(z). O

Lemma 17.4. Let v € H'((0,£)) = W"2((0,£)). Then v € W"((0,£)) n C([0,4)).
Moreover, if v € Hj((0,£)), then v(0) = v({) = 0.

Proof. Since L*((0,£)) C L*((0,£)), then v € W'((0,£)). Lemma 17.3 implies that, up
to changing v on a set of measure zero, v € C([0, £]).

Suppose v € Hg((0,£)). By definition of Hg((0,£)), there exists a sequence {v;}jen C
C((0,£)) such that v; — v in H'((0,£)), that is, lim; e |0 — vjl[12¢0,0)) = O and
limj_>oo H’U/—’U;' ||L2((0,Z)) = 0. Since the Holder inequality 1mphes HfHLl((O,Z)) S \/ZHfHLz((O,E)ﬁ
we obtain lim; oo || — vj |11 ((0,e)) = 0 and lim;e0 [[v" = v} 1((0,¢)) = 0. We know then
that, up to passing to a subsequence, there exists a set I C (0,¢) of full measure so that
lim; 00 vj(z) = v(x) for every = € I.

We claim that in fact the convergence v; — v is pointwise on [0, /] (in fact, we prove
that it is uniform). Indeed, if Z € I and = € [0, £], then, for every j € N,

o@) ~ i) + [ " () — v () dy

v(z) = v;(2)] =

¥4
< o(@) - v;(@)| + / v () — o) ()] d.

Therefore, lim;_,o |v(x) — v;(z)| = 0 for every z € [0, 4.
Since v;(0) = v;(£) = 0 for all j, then v(0) = v(¢) = 0. O

§17.1.2. Extension of u to R.
Lemma 17.5. For v € L*((0,£)), define E(v) € L, (R) as

E(v)(z) = Z (u(z mod lZ) gk 2k 41)(x) — u(—z  mod Z)ly2pi1,2k4+2)(T)) -
keZ

Then, distributionally, for every v € WH1((0,£)),
EM@") = EW).

Proof. From Lemma 17.3, we know that, up to modifying v on a set of measure zero,
v € C([0,4]) and, for all z € [0, 4],

(220) o@) =00 + [ o) dy
The identity (220) implies that, for every ¢ € 2(R),
1 7
(221) |l @) ds = 0006 ~ u(0)0(0) [ w@)o(a) da.
Let ¢ € 2(R).

- / E@) (z)é(z) dz / E@)(@)¢(z) dz
R

R
'
_ /O (u(2)' (2kE + ) — u(l — 2)d' (2K + 1) + ) do

C20 ST w(0)¢ (2ke + £) — u(0)¢ (2Kk)
—u(0)¢' ((2k + 1) + £) + u ()¢’ ((2k + 1)£)
£
_ / (u/ (2)$(2kt + ) — ' (£ — 2)p((2k + 1)C + 7)) d

- [ B @) .
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Corollary 17.6. Let u be a solution to (218). Let . = E(u) be the extension of u as in
Lemma 17.5. Then

(222) Al = M\ in R.

Proof. Tf u € H§((0,£)), then u,u’ € WH((0,£)) N C([0,4]) by Lemma ??. Therefore, by
Lemma 17.5, we have the following identities of distributions on R:

AE(u) = EQwu) = E(u") = E(W) = E(u)".
This is (222). O
§17.1.3. Solve v" = \v in R.
Proposition 17.7. Let A € C. A Schwartz distribution v € .#'(R) \ {0} solves

(223) v =
if and only if A =0 and v is affine, or A € (—o00,0) and there are a,b € C with
(224) v =aexp(iv—Azx) + bexp(—ivV —Az) = aexp(iuz) + bexp(—iuz),

wher > 0 and A = —p>.

Proof. (224) = (223). This just a direct computation, see Exercise 17.8
(223) = (224). Apply the Fourier transform to both sides of (223), to obtain

@2rie)’ Z () "L 2" Y Z(w) = \F(v).
This means that, for every ¢ € .(R),
(225) 0= 5((2mi&)°.F (v) = AF (V)|) .7 = 5/ (F (V)|(=47E* = X))

It follows that .Z(v) is supported on {¢£ € R : 472¢% + X = 0}. So, if A ¢ (—o00,0], then
spt(Z(v)) = @ and thus v = 0. If A = 0, then v" = 0 and we know that v must be affine;
see Exercise 10.1.

Suppose A € (—0,0), and let 1 > 0 such that

A= */,LQ.

Thus, we have —ﬁ = #= The above statement about the support of .7 (v) now reads

N
spt(F (v)) C 9 "9 )

By Proposition 13.37,
Fw) = (aaaaé# T baaa(s_#) .
a=0
We use again (225) to obtain that, for every ¢ € .'(R),
0= o (F(V)|(-47°€" = N)¢) .

(oo}

-y (aaa%% [(—47°€% — )¢ + ba0*6_ u [(—4m>€* - A)¢])
a=0

- f: i (g) (aaéﬁ (07 (47 €% + NP §] + bad_ p [0° (4n?¢? + A)aa*%])
a=0 =0

) (a8 4 [07 (4% + X)0° 9] + bad_ e [0° (46" + X)0° 7))

1%

I M8
Q
ey
™ Q

=1
= a8 (5 )~ bismto(— )
+3° (aa(aw%aa*w(%) +ala— 1)87#3“*%(%))

2 U qa—1 1 2 qa—2 M
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where in (%) we observed that, if 5 = 0, then the summand is zero. Since ¢ is an arbitrary

function in .(R), we obtain aq = bo = 0 for all « > 1. Hence,
g(v) = aoé% + bod_ L

From Exercise 14.26, we obtain

(136) N o
v(z) =" ag exp(2mi 27rx) + bo exp(—2mi o x)
= ap exp(ipx) + bo exp(—iux).
(]
Exercise 17.8. Show (224) = (223) in Proposition 17.7. O

Proposition 17.7 states that the spectrum of —9% = —A on R is [0, +00):
o(=A) =[0,400).
§17.1.4. Select solutions that are extensions.
Proposition 17.9. A non-zero function u € HE((0,£)) solves (218) if and only if the

following two hold

(1) there is k € N\ {0} such that A = — (
(2) there is a € C\ {0} such that

w(z) = a (eXp (ﬂ“%x) ~exp (_z’%x)) — %iasin (’%%) .

Proof. If u solves (218), then its extension & = E(u) defined in Lemma 17.5 is of the form
given by Proposition 17.7, with the additional boundary conditions @(0) = @(¢) = 0. If @
is affine, then @ = 0. Therefore, if @ # 0, then there are a,b € C with (224), i.e.,

7k)*, and

u(x) = aexp(ipz) + bexp(—ipz),
where g > 0 and A = —p2.
The condition @(0) = 0 implies b = —a. The condition 4(¢) = 0, implies
0 = aexp(iul) — aexp(—iul) = aexp(ipl)(1l — exp(—2iul)).
Therefore, either a = v = 0, or 2uf € 2r7Z, i.e., ul € 77, ie., V== pu € 7N. O

§17.2. More about the extension operator E. Lemma 17.5 gives a linear operator
E: L'((0,0) = Lige(R).
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Part 5. Extras
18. COMMENTS
§18.1. Correct proof of Theorem 10.32.
Correct proof of Theorem 10.32. Let U C R™ be open and u € C*°(U) a harmonic func-

tion. Fix & € U and set 7 = 1dist(&,0U). We claim that there exists € € (0,1) such that,
if

r < €r,

then the Taylor series of u centered at & converges on B(Z,r) to u, that is, for every
z € B(z,r),

u(z) = lim Z Z D“u!(j;) (z —2)~.

N — oo «
k=0 |a|=k
To this aim, define the reminder function
N-1
D*u(z o
Ry (z) = u(z) — '( )(xf:c) .
k=0 |a|=k o

For every x € B(Z,r) there exists t, € [0,1] such that

R (z) = Z Du(z + t(z — 2)) (@ — ).

a!
la|=N

Using Proposition 10.27, we make the following estimate: since & + t(z — &) € B(Z,r) C
B(&, ), then B(& + t(x — &),7) C B(&,2#) C U. Therefore,

INOIES PRl a2

AlN
al

T

|la|=N

. n+1 N
(4<2) Q"' N)Yull L1 (Bati@—2).0) Z ilx—ilN

= FntN 1
WnT™ A= !
< @ nN)Yullpr (a2 N Z 1
- wp P tN " al
la|=N

(226) Hu||L1 B(#,7) N /eon+1 NnN
- wn(f”(” = (" nN) N

Nl sy V2aN(N/e)N (2" n?N)N
T Wy N! V27N (N/e)N
. lullLr(Bz,7)) V2aN(N/e)N (2" n2e)™
o wet? N! VorN

where we have used the Multinomial Theorem
N _ N _ N!
(20 AEDMED

Using Stirling’s formula

N
lim V2rN(N/e) _1

we conclude that, if e € (0,1) is so that 2"t n2e < 1, then imy— oo |Rn(x)| = 0. O
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19. LiST OF NOTATIONS

: Functions 2 — C that are smooth up to order k

: Functions in Ck(Q) that have compact support contained in €2
: Bounded functions belonging to C* ()

: Functions Q — W with the required regularity

: Hermitian product: see Section §1.2
: Dot product: see Section §1.1

: Pairing: see Section §1.3

: Pairing: see Section §1.3

Derivatives: see Section 2

: Gradient: see Section 2
: Derivatives: see Section 2
: LP spaces: see Section §3.1

: Laplace operator: see Section §10.1

size of multi-index: see Section 2

: support of p, that is, the closure of {z : p(z) # 0}
: open ball with center = and radius r, that is, {y : |y — z| < r}
: closed ball with center = and radius r, that is, {y : |y —z| < r};

in metric spaces, B(z,r) and B(x,r) may be different

: wave operator (] = 97 — A\; see Section §12.1
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analyticity of harmonic functions, 27 wave equation, 47

wave opeartor, 47
closed parabolic cylinder, 40

corrector function, 29
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Dirichlet’s principle, 32
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mean value property for — functions, 22
sub— function, 24
super— function, 24
Harnack’s Inequality, 28
heat
fundamental solution for the — equation, 34
heat equation, 34

Kirchhoff’s formula, 52

Laplace

fundamental solution of the —’s equation, 18
Laplace operator, 17
Liouville’s Theorem, 28

maximum
strong — principle, 23
mean value property for harmonic functions,
22
minimum
strong — principle, 23
mollifier, 15

operator
Laplace —, 17

parabolic boundary, 40
parabolic interior, 40
Poisson equation, 20, 24
Poisson’s formula, 53
principle
Dirichlet’s —, 32
strong maximum —, 23
strong minimum —, 23

standard family of mollifiers, 15
strong maximum principle, 23
strong minimum principle, 23
subharmonic function, 24
superharmonic function, 24

test function, 55

theorem
analyticity of harmonic functions, 27
Dirichlet’s principle, 32
Fundamental — of Calculus of Variations, 8
Harnack’s Inequality, 28
Liouville’s —, 28

transport equation, 16
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